
Nonlinear Optical Materials 

 A
ug

us
t 1

5,
 2

01
2 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e:
 M

ay
 5

, 1
99

6 
| d

oi
: 1

0.
10

21
/b

k-
19

96
-0

62
8.

fw
00

1

In Nonlinear Optical Materials; Karna, S., et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1996. 



 A
ug

us
t 1

5,
 2

01
2 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e:
 M

ay
 5

, 1
99

6 
| d

oi
: 1

0.
10

21
/b

k-
19

96
-0

62
8.

fw
00

1

In Nonlinear Optical Materials; Karna, S., et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1996. 



ACS SYMPOSIUM SERIES 628 

Nonlinear Optical Materials 
Theory and Modeling 

Shashi P. Karna, EDITOR 

U.S. Air Force Phillips Laboratory 

Alan T. Yeates, EDITOR 

U.S. Air Force Wright Laboratory 

Developed from a symposium sponsored 
by the Division of Computers in Chemistry 

at the 208th National Meeting 
of the American Chemical Society, 

Washington, DC, 
August 21-25, 1994 

American Chemical Society, Washington, DC 1996 

 A
ug

us
t 1

5,
 2

01
2 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e:
 M

ay
 5

, 1
99

6 
| d

oi
: 1

0.
10

21
/b

k-
19

96
-0

62
8.

fw
00

1

In Nonlinear Optical Materials; Karna, S., et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1996. 



Library of Congress Cataloging-in-Publication Data 

Nonlinear optical materials: theory and modeling: developed from a 
symposium sponsored by the Division of Computers in Chemistry at the 
208th National Meeting of the American Chemical Society, Washington, 
D.C., August 21-25, 1994 / Shashi P. Karna, Alan T. Yeates. 

p. cm.—(ACS symposium series, ISSN 0097-6156; 628) 

Includes bibliographical references and indexes. 

ISBN 0-8412-3401-9 (alk. paper) 

1. Nonlinear optics—Materials—Congresses. 2. Optical materials-
Congresses. 

I. Karna, Shashi P., 1956- . II. Yeates, Alan T., 1955-
III. Series. 

QC446.15.N648 1996 
621.36'9—dc20 96-956 

CIP 

This book is printed on acid-free, recycled paper. 

Copyright © 1996 

American Chemical Society 

All Rights Reserved. The appearance of the code at the bottom of the first page of each 
chapter in this volume indicates the copyright owner's consent that reprographic copies of the 
chapter may be made for personal or internal use or for the personal or internal use of 
specific clients. This consent is given on the condition, however, that the copier pay the stated 
per-copy fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, 
M A 01923, for copying beyond that permitted by Sections 107 or 108 of the U.S. Copyright 
Law. This consent does not extend to copying or transmission by any means—graphic or 
electronic—for any other purpose, such as for general distribution, for advertising or 
promotional purposes, for creating a new collective work, for resale, or for information 
storage and retrieval systems. The copying fee for each chapter is indicated in the code at the 
bottom of the first page of the chapter. 

The citation of trade names and/or names of manufacturers in this publication is not to be 
construed as an endorsement or as approval by ACS of the commercial products or services 
referenced herein; nor should the mere reference herein to any drawing, specification, 
chemical process, or other data be regarded as a license or as a conveyance of any right or 
permission to the holder, reader, or any other person or corporation, to manufacture, 
reproduce, use, or sell any patented invention or copyrighted work that may in any way be 
related thereto. Registered names, trademarks, etc., used in this publication, even without 
specific indication thereof, are not to be considered unprotected by law. 

PRINTED IN THE UNITED STATES OF AMERICA 

 A
ug

us
t 1

5,
 2

01
2 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e:
 M

ay
 5

, 1
99

6 
| d

oi
: 1

0.
10

21
/b

k-
19

96
-0

62
8.

fw
00

1

In Nonlinear Optical Materials; Karna, S., et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1996. 



Advisory Board 
ACS Symposium Series 

Robert J. A l a i m o 
Procter & Gamble Pharmaceuticals 

M a r k A r n o l d 
University of Iowa 

D a v i d Baker 
University of Tennessee 

A r i n d a m Bose 
Pfizer Central Research 

Robert F . Brady, Jr . 
Naval Research Laboratory 

M a r y E . Castel l ion 
ChemEdit Company 

Margaret A. Cavanaugh 
National Science Foundation 

A r t h u r B . E l l i s 
University of Wisconsin at Madison 

G u n d a I. G e o r g 
University of Kansas 

Madeleine M. Joul l ie 
University of Pennsylvania 

Lawrence P. K l e m a n n 
Nabisco Foods Group 

Douglas R . L l o y d 
The University of Texas at Austin 

Cynthia A. Maryanof f 
R. W. Johnson Pharmaceutical 

Research Institute 

Roger A. M i n e a r 
University of Illinois 

at Urbana-Champaign 

O m k a r a m Nalamasu 
A T & T Bell Laboratories 

Vincent Pecoraro 
University of Michigan 

George W . Roberts 
North Carolina State University 

John R . Shapley 
University of Illinois 

at Urbana-Champaign 

Douglas A. Smi th 
Concurrent Technologies Corporation 

L . Somasundaram 
DuPont 

M i c h a e l D . Taylor 
Parke-Davis Pharmaceutical Research 

William C. Walker 
DuPont 

Peter Wil let t 
University of Sheffield (England) 

 A
ug

us
t 1

5,
 2

01
2 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e:
 M

ay
 5

, 1
99

6 
| d

oi
: 1

0.
10

21
/b

k-
19

96
-0

62
8.

fw
00

1

In Nonlinear Optical Materials; Karna, S., et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1996. 



Foreword 

T H E ACS S Y M P O S I U M S E R I E S was first published in 1974 to 
provide a mechanism for publishing symposia quickly in book 
form. The purpose of this series is to publish comprehensive 
books developed from symposia, which are usually "snapshots 
in time" of the current research being done on a topic, plus 
some review material on the topic. For this reason, it is neces
sary that the papers be published as quickly as possible. 

Before a symposium-based book is put under contract, the 
proposed table of contents is reviewed for appropriateness to 
the topic and for comprehensiveness of the collection. Some 
papers are excluded at this point, and others are added to 
round out the scope of the volume. In addition, a draft of each 
paper is peer-reviewed prior to final acceptance or rejection. 
This anonymous review process is supervised by the organiz
er(s) of the symposium, who become the editor(s) of the book. 
The authors then revise their papers according to the recom
mendations of both the reviewers and the editors, prepare 
camera-ready copy, and submit the final papers to the editors, 
who check that all necessary revisions have been made. 

As a rule, only original research papers and original re
view papers are included in the volumes. Verbatim reproduc
tions of previously published papers are not accepted. 

ACS BOOKS DEPARTMENT 
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Preface 

S l N C E T H E F I R S T T H E O R E T I C A L D E S C R I P T I O N of nonlinear optical 
phenomena was published in 1962, many people have worked to improve 
our fundamental understanding of the microscopic mechanism and origin 
of these processes. These efforts extend from the development of simple 
phenomenological models for explaining experimental observations in 
terms of a few physical quantities to the development and application of 
increasingly sophisticated quantum chemical techniques to correctly 
predict structure-nonlinear optical property relationship information that 
can be used to design and develop new materials in an efficient and cost-
effective manner. 

Despite the contributions of many individuals, we felt the field lacked 
a single central source of information for new researchers to get a good 
overview of the theoretical aspects of nonlinear optical materials design. 
The symposium on which this book is based provided a useful exchange 
of information. We convinced several of the leading authorities in the 
field to contribute chapters describing the history and state of the art 
from their individual perspectives in the design and understanding of non
linear optical materials. This book is the culmination of our efforts. 

The interest in quantum mechanical modeling of nonlinear optical 
materials has, fortunately, coincided with the availability of low-cost com
puters with fast central processing units, so that it is becoming possible to 
address more basic and fundamental problems for increasingly complex 
and realistic model systems. It might even be argued that the increased 
demand for the computational modeling of nonlinear optical and other 
materials is largely responsible for the rapid pace of high-performance 
computer development. In addition, these demands have also made the 
development of software systems that can be used to model nonlinear 
optical materials on these machines a profitable and competitive business. 
With increased access to modeling tools and a spiraling cost of materials 
and waste disposal, computational modeling probably will acquire a more 
significant status and make valuable contributions to the development of 
new nonlinear optical materials. We hope that this book will serve as an 
important and useful resource for practicing scientists as well as newcom
ers in the field of computational nonlinear optical materials development. 
We also hope that experimentally oriented scientists may find this book 
useful as an aid to understanding the promise, and the limitations, of 
computational modeling for nonlinear optical design. 

ix 
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The chapters are grouped together by general technique(s) used for 
the modeling and their applications. After an introduction, graciously 
contributed by N . Bloembergen, one of the founders of the field, and the 
overview chapter, the next three chapters (2-4) focus on the ab initio 
time-dependent Hartree -Fock and post-Hartree-Fock techniques and 
their application for the calculation of molecular nonlinear optical 
materials. Then Chapters 5-7 discuss the Hartree-Fock-based semiem-
pirical techniques and their applications to modeling the second- and 
third-order organic nonlinear optical materials. Chapters 8 and 9 focus 
on the development of density-functional techniques and their application 
to predict molecular nonlinear optical coefficients. Chapter 10 discusses 
a time-dependent perturbation theory for determining nonlinear optical 
properties of polymers. Chapters 11 and 12, also devoted to the non
linear optical properties of polymers, discuss model Hamiltonian methods 
and their applications. We conclude with an experimental chapter 
devoted to one of the most recent applications of nonlinear optical 
materials—the resonant nonlinear optical phenomenon, which presents a 
major challenge to theoretical modeling. 
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Introduction 

T H E H E L D O F O R G A N I C N O N L I N E A R O P T I C A L materials has been the 
subject of intense research efforts during the past two decades. Several 
important applications in nonlinear optical devices appear close to reali
zation. They have been demonstrated in principle, but the economic and 
engineering considerations require further developments. 

It is timely to have a collection of the various theoretical approaches 
to describe the nonlinear optical properties of large organic molecules 
and of polymers. The results are compared with the ever-increasing body 
of experimental results. They include diverse nonlinear optical 
phenomena such as third-harmonic generation, two-photon absorption, 
electric field induced second-harmonic generation, intensity-dependent 
index of refraction, stimulated Raman scattering, and others. 

This book provides an up-to-date account and critical discussion that 
emphasize the issues of theoretical modeling of nonlinear optical proper
ties of organic materials. It is a welcome addition to the ever-growing 
literature in nonlinear optics. 

N. BLOEMBERGEN 

Division of Applied Science 
Harvard University 
Pierce Hall 
Cambridge, MA 02138 

October 29, 1995 
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Chapter 1 

Nonlinear Optical Materials: 
Theory and Modeling 

Shashi P. Karna 1 and Alan T. Yeates2 

1Space Electronics Division, U.S. Air Force Phillips Laboratory, 3550 
Aberdeen Avenue, Southeast, Kirtland Air Force Base, N M 87117-5776 

2Polymer Branch, Wright Laboratory, 
Wright-Patterson Air Force Base, O H 45433-7750 

With a view to developing new materials for technological applica
tions, the theory and mechanism of nonlinear optical phenomena in 
various dielectric media are reviewed. The role of theoretical mod
eling in advancing our understanding of the structure-property rela
tionships of nonlinear optical materials is discussed. 

I. INTRODUCTION 

Since the discovery by Franken et al1 of optical second harmonic generation 
(SHG) in quartz crystal, a number of optical frequency mixing phenomena have been 
observed in a variety of dielectric media. Detailed descriptions of these processes, 
collectively known as the nonlinear optical (NLO) processes, the dielectrics in which 
these are observed, and their practical applications have already appeared in a number 
of excellent texts2-6 and symposia proceedings.7-9 In this chapter, we present a brief 
account of the theory and modeling of NLO materials with a view of their applications 
in the current and future technology. 

NLO phenomena encompass a broad range of light (electromagnetic radiation) 
mediated processes from the commonly observed Raman scattering to the less com
monly observed two-photon absorption and optical harmonic generation. In this chap
ter, we will limit our discussion to those NLO phenomena which are principally de
termined by electronic polarizations alone. It should be noted, however, that even in 
these cases, there may be some contribution from nuclear motions in the molecule or 
unit cells.5,6 

0097-6156/96/0628-0001$15.50/0 
© 1996 American Chemical Society 
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2 NONLINEAR OPTICAL MATERIALS 

T h e l inear and nonl inear polar izat ions are generally characterized by their re
spective susceptibi l it ies. T h e bu lk electronic susceptibilities are defined by a power 
series expansion of the po lar i zat i on P as a funct ion of the appl ied electric field,2 

P = x ( 1 ) • E + x ( 2 ) : E E + X ( 3 ) : E E E + • • •. (1) 

Here , x^ is the rath-order susceptibi l i ty of the m e d i u m and E represents the t o t a l 
electric-f i led experience by the system. T h e nth. order susceptibi l i ty is a tensor quan
t i t y of rank ( n - f 1) which has 3^ n + 1 ^ elements. T h u s , x ^ is a second-rank tensor w i t h 
s ix elements, x ^ is a t h i r d - r a n k tensor w i t h twenty-seven elements, x ^ is a f our th -
rank tensor w i t h eighty-one elements, and so on. O f course, not a l l the elements of a 
suscept ibi l i ty tensor are l inear ly independent and i n most prac t i ca l mater ia ls m u c h 
fewer elements are required to describe the tensor. 

In general , N L O phenomena are characterized as second-order or th i rd -order de
pending on whether they are described p r i m a r i l y through the x ^ or the x ^ terms. 
T h e S H G is an example of a second-order phenomenon i n whi ch two photons, each 
of an angular frequency a;, combine to produce a t h i r d photon w i t h angular fre
quency 2u. Some of the inorganic materials such as dihydrogen phosphate ( K D P ) , 
l i t h i u m niobate , and b a r i u m t i tanate hav ing large x ^ value have found appl icat ions 
as frequency doublers for the powerful lasers used i n laser fusion. For low power ap
p l i cat ions , organic dyes w i t h suitable x ^ values have been found to be useful for 
upconver t ing semiconductor l a s e r s . 5 ' 9 ' 1 0 These dyes must be incorporated in to po ly 
mer host for mechanical s tabi l i ty and processibi l i ty, which presents the m a i n cha l 
lenge to the development of S H G mater ia ls . Since the dyes are inherent ly disordered 
i n the host system, there is a center of symmetry which destroys the second-order 
response. In order to overcome this difficulty, the dye molecules are al igned i n an 
intense stat ic electric field at a temperature above glass t rans i t i on of the po lymer . 
W h e n the po lymer is cooled, the dye molecules are al igned preferential ly g i v i n g rise 
to a second-order response. Unfortunate ly , such systems are unstable w i t h respect 
to t ime and temperature , tending to re turn to their or ig ina l disordered state. For a 
m a t e r i a l to be commerc ia l ly v iable as a component i n an " on - ch ip " op t i ca l device, 
i t must m a i n t a i n a good second-order response when exposed to temperatures as 
h igh as 320 ° C . For m i l i t a r y appl icat ions i t must also m a i n t a i n 9 5 % of i t s o r i g ina l 
response after 10 years at 125 ° C . 1 1 These are very stringent requirements w h i c h w i l l 
necessitate m u c h further research. 

T h e second-order N L O phenomenon of most interest for m i l i t a r y appl icat ions is 
the electrooptic ( E O ) or Pockels effect. T h e E O effect, mediated by a x ^ t e r m , arises 
f rom the change i n the index of refraction of a dielectric i n the presence of a s tat i c 
or low-frequency opt i ca l field. T h e refractive index of the m a t e r i a l varies l inear ly 
w i t h the strength of the appl ied electric field. T h e E O phenomenon finds appl i cat ions 
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1. KARNA & YEATES Theory and Modeling 3 

i n the development of active opt i ca l interconnects and switches, which w i l l be used 
i n future d a t a processing and communicat ion systems i n a wide range of aircraft 
and satel l i te systems. Here organic polymers have a great advantage over inorganic 
mater ia l s . W h i l e the E O response of organic mater ia ls is comparable to or better t h a n 
the best inorganic mater ia l s , 5 the low dielectric constants of the former result i n a 
m u c h faster response. T h i s is because the po lar i za t i on i n organics results p r i m a r i l y 
f rom electronic motions and have much smaller nuclear (v ibrat ional ) component . 
T h u s E O switches can operate at much greater speeds (<ps) and E O modulators can 
operate at m u c h higher bandwidths (>40 G H z ) . In a d d i t i o n , organic polymers can be 
easily processed into fi lms and waveguides, m a k i n g on-chip appl icat ions m u c h easier. 
However , as w i t h the S H G appl icat ions , thermal and tempora l s tab i l i ty of the organic 
mater ia ls remains an issue. T h e opt i ca l qual i ty of the mater ia ls is also an issue to be 
taken in to account. O p t i c a l losses on the order of l d B / c m or less must be ob ta ined , 
m a k i n g the phase s tab i l i ty and pur i ty of the materials a c r i t i ca l issue. M a t e r i a l s w i t h 
a good combinat i on of properties for second-order on-chip device appl icat ions have 
yet to be developed. 

W h i l e second-order materials are tanta l i z ing ly close to f inding app l i ca t i on , t h i r d -
order mater ia ls are m u c h further from real appl icat ions . However , the possible ap
pl icat ions for th ird -order materials are just as profound. T h e u l t i m a t e goal for the 
app l i ca t i on of th ird -order materials is the development of " a l l - o p t i c a l " ( A O ) comput 
i n g and s ignal processing. T h i s w i l l require the development of mater ia ls that have 
a large nonresonant value of x ^ • Such materials must be able to undergo op t i ca l l y 
induced changes i n the refractive index. So far the largest values of x ^ have come 
f rom h igh ly conjugated organic p o l y m e r s . 5 - 9 W h i l e a large number of such com
pounds have been invest igated, none have demonstrated the necessary magni tude of 
X ^ to be of p r a c t i c a l , or even laboratory , use i n a prototype A O swi tch . One m a j o r 
prob lem that exists i n the development of l inear (or quasi-linear) conjugated po ly 
mers for A O appl icat ions is the interference f rom l ow- ly ing two-photon absorpt ions . 5 

C u r r e n t l y i t appears l ike ly that because of h igh opt i ca l losses f rom such absorpt ions , 
l ong-chain conjugated polymers w i l l probably never be usable for A O switch ing a p p l i 
cat ions. A l t e r n a t i v e materials current ly being invest igated inc lude two-d imens ional ly 
conjugated molecules, which have higher l y i n g two-photon state, and molecules w h i c h 
produce a l ight induced refractive index change as a result of cascaded second-order 
op t i ca l non l inear i t i e s . 1 2 

T h e outlook for the third-order materials is not entirely bleak. Uses have been 
found recently for materials w i t h a large resonant value of x ^ • T h e first is the two-
photon upconverted las ing . In this app l i ca t i on , a two-photon absorpt ion i n the 600 
- 900 n m region of the spectrum can be used to produce a popu la t i on invers ion and 
las ing i n the blue region (400 - 480 nm) . However, as of this w r i t i n g , only super-
radiance (single-pass ampli f icat ion) has been d e m o n s t r a t e d . 1 2 It is possible, at least 
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4 NONLINEAR OPTICAL MATERIALS 

theoret ical ly , to place these materials i n a cavity to ob ta in true las ing . T h i s process, 
when real ized, wou ld provide an alternative to the S H G for the product i on of coher
ent blue l i ght . Other potent ia l appl icat ions of such materials inc lude higher density 
op t i ca l d a t a storage and high-frequency opt i ca l communicat ions . A successful mate 
r i a l w o u l d have to floresce i n the blue, while hav ing a strong two-photon absorpt ion 
i n the near - IR . Since no structure-property relationships have been established for 
two-photon absorpt ion , c omputat i ona l model ing can have a m a j o r influence on the 
development and successful appl icat ions of these mater ia ls . These same mater ia ls also 
show promise for another app l i ca t i on , namely, opt i ca l l i m i t i n g i n the vis ible and near-
I R . O p t i c a l l i m i t i n g is a m a t e r i a l property by which low- intensi ty l ight is passed and 
high- intens i ty l ight is absorbed. T h e mechanism is governed again by the two-photon 
absorpt ion process because, while the fract ion of l ight absorbed is independent of 
intens i ty for the l inear region (Beer's l a w ) , the fract ion of l ight absorbed through 
two-photon process depends l inear ly on the intensi ty of l ight . T h u s intense l ight w i l l 
be more strongly absorbed due to the two-photon absorptions leading to a l i m i t 
i n g of the passed intensity . A s is clear, this property has i m p o r t a n t commerc ia l and 
m i l i t a r y appl icat ions i n high- intensity rad ia t i on protect ive devices. T h e m i l i t a r y ap
pl i cat ions of the opt i ca l l i m i t i n g process center around protect ion of sensors and eyes 
f rom hosti le laser threats . A g a i n , theoret ical model ing directed toward advancing our 
unders tanding of the two-photon absorpt ion process and its relat ionships w i t h the 
s t r u c t u r a l features of materials is of paramount importance for a speedy development 
of op t i ca l l i m i t i n g mater ia ls . 

In what follows, a brief survey of the general theory of N L O processes is g iven 
i n Section I I . In Section I I I , theoretical models used to describe the or ig in and mech
anisms of the second- and the third-order N L O materials are reviewed. T h e recent 
observations of S H G i n s i l i ca glass based materials is discussed i n section I V . F i n a l l y , 
the role of theory and model ing i n developing new N L O mater ia ls is summar ized i n 
Section V . 

II. Q U A N T U M M E C H A N I C A L T H E O R Y O F N L O P H E N O M E N A 

T h e first successful theoret ical exp lanat ion of N L O processes i n an in f in i te , ho
mogeneous, nonl inear dielectric m e d i u m was prov ided by A r m s t r o n g et a l . 1 3 These 
authors were able to describe various opt i ca l frequency m i x i n g phenomena, e.g. S H G 
and th ird -harmonic -generat ion ( T H G ) , by in t roduc ing a generalized macroscopic non
l inear p o l a r i z a t i o n , P N L and solving the M a x w e l l equation i n an in f in i te , anisotropic 
dielectric m e d i u m . T h e i r theory was subsequently extended by Bloembergen and 
P e r s h a n 1 4 to f inite boundary condit ions which described the opt i ca l harmonic gen
erat ion i n exper imental s i tuat ion . A c c o r d i n g to this theory, i n the presence of an 
external opt i ca l electric field E , the t o t a l po lar i zat ion P of a dielectric m e d i u m can 
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1. KARNA & YEATES Theory and Modeling 5 

be expressed as the sum of a l inear po lar i zat i on P L and a nonl inear po la r i za t i on P N L 

defined, respectively, as 

P L = X ( 1 ) ' E (2) 

and 
p N L = ^(2) . E E + x ( 3 ) : E E E + . . . ̂  (3) 

T h e susceptibi l i ty tensors x^ i n the above equations are related to the polar izabi l i t ies 
of the microscopic units of the dielectric . Cons ider ing the angular frequency of the 
i n c o m i n g l ight beam to be ( j , the l inear susceptibi l i ty tensor, of the m e d i u m can 
be w r i t t e n as 

xi>) = E E (4) 

In the above equat ion , a\^ (w) is the element of the l inear po lar izab i l i ty tensor at the 
pth. microscopic site and N^^u) is related to the local field created by the op t i ca l 
beam of frequency u at the same site. If we consider two opt i ca l beams of angular 
frequencies u\ and u2 in teract ing i n a m e d i u m to creat a t h i r d beam of frequency 
Lja, then the second-order susceptibi l i ty tensor x^ 1S related to the microscopic 
po lar i zab i l i ty tensor, /3, as 

x l ' l . e K = " 2 + = E E ( W » ) < * ( ^ ) ^ , * K = " 2 + « , ) • (5) 
P 

T h e th ird -order susceptibihty tensor, x^3K corresponding to the generation of a l ight 
beam of frequency ua f rom the m i x i n g of three input beams of frequencies u\, u2, 

and us is related to the microscopic po lar izab i l i ty tensor, 7 , as 

Xa\,c,d(U* = L J 3 + ^ 2 

= E E »i1{»*)*lp]w^ (6) 
P t,j,Ar,I 

In a centrosymmetr ic m e d i u m , the odd-rank tensor (e.g., x^ a n ( l P) vanishes, 
whereas the even-order tensors have nonvanishing values regardless of the symme
t r y of the m e d i u m . It is impor tant to note that the macroscopic suscept ibi l i ty tensor, 
X^n\ has the point symmetry properties of the m e d i u m , such as a c rys ta l la t t i ce 
as a whole , whereas the polarizabi l i t ies ( a , 7 , etc.) have the symmetry proper
ties of i n d i v i d u a l microscopic un i t s , for example an a tom on the p t h la t t i ce site , a 
uni t cell conta in ing several atoms, or a d iatomic bond , that const itute the m e d i u m . 
B o t h , the macroscopic and the microscopic tensors of a given order n, however, 
obey some common permutat i ona l symmetry . For example , i n the second-order case, 
Pijk(va = u2 + u>i) = Pkij{u\ = ua - u2) = Pjki(u2 = ua - ui), wh i ch is also 
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6 NONLINEAR OPTICAL MATERIALS 

true for the elements of x ^ • S i m i l a r re lat ion holds for the th ird -order suscept ib i l i ty 
(po lar izab i l i ty ) tensor. In other words, the frequency arguments m a y be permuted at 
w i l l prov ided the Car tes ian indices i, j, k, etc. are s imultaneously permuted so that a 
given frequency is always associated w i t h the same index. In the l i m i t of low opt i ca l 
frequencies, however, one can freely permute the indices i, j, k, etc., w i thout m u c h 
loss of generality. T h i s a p p r o x i m a t i o n , which considerably reduces the number of i n 
dependent elements to describe the susceptibi l i ty tensor, is k n o w n as the K l e i n m a n 
s y m m e t r y . 1 5 

T h e susceptibi l i ty tensors x ^ and x ^ i n eq. (3) are a measure of the N L O 
response of a m e d i u m . T h a t i s , a large value for x^ n- of a m e d i u m is associated w i t h 
large o p t i c a l nonl ineari ty and a fast N L O response. F r o m eqs. (5) and (6), one can 
easily infer that the large opt i ca l nonl inearity of a m e d i u m is d irect ly related to the 
N L O response of i ts microscopic uni ts . W e w i l l see i n the next section how this basic 
concept has p layed a central role i n the development of new N L O mater ia ls . 

A r m s t r o n g et a l 1 3 also derived q u a n t u m mechanical expressions to calculate the 
elements of the microscopic polar izabi l i t ies j3 and 7 i n terms of the m a t r i x elements 
of the dipole moment operator and energy of the excited states. A detai led q u a n t u m 
mechanica l treatment of microscopic polarizabi l i t ies i n a nonabsorbing m e d i u m was 
later given by Franken and W a r d 1 6 and W a r d 1 7 which was subsequently generalized 
by O r r a n d W a r d 1 8 to include resonance cases. T h e i r expressions for the elements of 
j3 and 7 , respectively, i n a nonresonant case can be w r i t t e n as 

Pabc(u*; ^ 1 , ^ 2 ) = ^K(u>a,LJi,U2) • p(w a,U>l,U> 2) • 

y> <ff|a|m><m|bln><nlclff > 1 . 
(AEmg - hua) (AEng - hi*) y U 

E 
<flf|a|/x/|d|m><m|c|n><n|6|5f> 

l m ^ g (AElg - hua) {AEmg - ^ 1 - hu2)(AEng - ftwi) 

E <g\a\m><m\d\g><g\c\n><n\b\g> ) 
m ^ g (AEmg - hua) (AEng - hwtUAEn, + hu2)J' { } 

In the above equations, a,b,c,d = x,y,z; g represents the ground state, / , m , n are 
the excited states, and AE represents the energy difference between two states. T h e 
m a t r i x element w i t h barred operator is defined as 

<m\T\n>=<m\r\n> — <g\r\g> . (9) 
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1. KARNA & YEATES Theory and Modeling 7 

T h e summat ions i n eqs. (7) and (8) are performed over a l l terms generated by the 
p e r m u t a t i o n of the frequency arguments as ind icated by the operator p. T h i s i n 
eq. (7) leads to six terms and i n eq. (8) to twenty-four terms. T h e values of the 
numer i ca l coefficients K(ua;ui,U2) and K(ua;ui,u>2,U3) depend on p a r t i c u l a r N L O 
processes and have been tabulated by O r r and W a r d . 1 8 T h e O r r - W a r d theory of the 
microscopic nonl inear po lar izabi l i t ies , also k n o w n as hyperpolar izabi l i t ies , has p layed 
a p i v o t a l role i n advancing our understanding of the mechanism and or ig in of N L O 
phenomena i n atoms and molecules. T h i s theory has also p layed a cruc ia l role i n the 
development of the " intermediate-state m o d e l " which has proved very successful i n 
exp la in ing the mechanism of N L O processes i n metals and c rys ta l s . 6 

Equat ions (7) and (8) provide a straight- forward means for a quant i ta t ive pre
d i c t i on of the N L O properties of atoms and molecules. A l l that is required is the 
m a t r i x elements of the dipole operator and the energies. A l t h o u g h the s u m m a t i o n i n 
eqs. (7) and (8) r u n over the entire excited state space leading up the c o n t i n u u m , 
i n real i ty there are far fewer m a t r i x elements i n the numerator wh i ch have sufficient 
magni tude to be of importance . Therefore, i n q u a n t u m mechanica l ca lcu lat ions , i t 
often suffices to perform the s u m m a t i o n over a t runcated space compr is ing of the 
most i m p o r t a n t states i n the excited-state mani fo ld . 

A n o t h e r q u a n t u m mechanical method that has proved to be quite useful i n 
the recent years for theoret ical predict ion of the l inear and N L O polar izabi l i t ies is 
the density m a t r i x approach of Sekino and B a r t l e t t . 1 9 In Sek ino -Bar t l e t t theory, the 
po lar izabi l i t ies , wh i ch are per turbat i on enrgies of various o r d e r , 2 0 are ca lculated as 
the expectat ion value of the operator H ( r , 2 ) (= + A*' E ( r , 2 ) ) a s 2 1 

p = < * ( r , t ) | H ( r , O I * ( r , 0 > . ( 1 0 ) 

where, is the t o t a l wavefunction of the system i n the presence of the exter
n a l op t i ca l f ie ld, E ( r , J) . A T a y l o r series expansion of the above equat ion yields the 
fo l lowing express ions : 1 9 

a a 6 ( « ) = - T r [ h ^ D ^ M ] , (11) 

/ W - w , ; « i , a > 2 ) = - T r [ h ^ D ^ ^ x , ^ ) ] , (12) 

7 a 6 c d ( - w < r ; < * , a * , a * ) = - T r [ h ^ D g ^ w i , ^ , ^ ) ] , (13) 

for the elements of the l inear and N L O polar izabi l i t ies . In the above equations, a , 6, c, d 

(= x , y, z) represent the Cartes ian conponents, is the a t h component of the dipole 
moment m a t r i x , and D ^ , D< 2 ) , D^ 3 ^ are the ground-sate one-partic le per turbed den
sity matrices of order 1, 2, and 3, respectively. Q u a n t u m mechanica l method to eval 
uate by per turbat i on theory is described i n deta i l i n the or ig ina l paper of Sekino 
and B a r t l e t t . 1 9 
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8 NONLINEAR OPTICAL MATERIALS 

T h e Sek ino -Bart l e t t theory provides a means to calculate (hyper)polar izabi l i t ies 
as a change in the ground-state charge density of the system in the presence of an 

external optical field. U n l i k e the O r r - W a r d theory, where accurate knowledge of the 
excited state wavefunction is as i m p o r t a n t as that of the ground-state wavefunct ion , 
the Sek ino -Bar t l e t t approach requires an accurate descript ion of the ground-state 
wavefunct ion alone. Since an accurate determinat ion of the excited state wavefunc
t i o n , except for a few atomic c a s e s , 2 2 ' 2 3 is considerably more difficult t h a n that of 
the ground-state wavefunct ion, the Sek ino -Bart le t t approach offers a better choice 
t h a n the O r r - W a r d theory i n the f irst-principles calculations i n v o l v i n g large molecu
lar systems. However, the Sek ino -Bart le t t theory lacks the advantage of the O r r - W a r d 
theory i n i ts ab i l i ty to exp la in N L O processes i n terms of the phys ica l ly useful concept 
of intermediate states. 

T h e Sek ino -Bart l e t t t h e o r y 1 9 has also served as a catalyst for a number of recent 
developments related w i t h the f irst-principles ca lcu lat ion of N L O coefficients. Notab le 
among others are the works of K a m a and D u p u i s , 2 4 R i ce et a l , 2 5 A r g e n et a l , 2 6 

K a m a , 2 7 and Sasagane et a l 2 8 to calculate l inear and N L O polar izabi l i t ies of closed-
shell a tomic and molecular systems. A recent e x t e n s i o n 2 9 of this theory allows to 
calculate the l inear and the N L O properties i n terms of the perturbed-density matrices 
obta ined for i n d i v i d u a l spins. 

A s a l luded to i n the preceding section, the electronic contr ibut ions alone cannot 
account for the observed N L O properties of mater ia ls . There is enough exper imenta l 
evidence 5 to suggest that at sufficiently low opt i ca l frequencies the observed N L O 
processes have sizeable contr ibut ion from the nuclear m o t i o n of the system as w e l l . 
In this regard, whi le the O r r - W a r d theory is quite general and can be used to ca l 
culate electronic as wel l as v i b r a t i o n a l N L O polarizabi l i t ies ( in the la t ter case the 
wavefunct ion and the energy difference i n eqs. (7) and (8) correspond to vibrational 

states) , the Sek ino -Bart l e t t theory does not lend itsel f to account for such effects. 
Q u a n t u m mechanica l theory related to the v i b r a t i o n a l N L O properties has been the 
subject of a number of recent studies 3 0 - 3 2 It should be, however, noted that unl ike 
the electronic processes, the nuclear process are inherently slow, and a l though the 
nuclear N L O phenomena such as the h y p e r - R a m a n and hyper -Ray le igh effects 3 3 are 
i m p o r t a n t w i t h i n their own rights for prob ing the s t ruc tura l features of mater ia l s , at 
the current t ime they ho ld rather l i t t l e interest for device appl icat ions . 

III . T H E O R E T I C A L M O D E L I N G O F N L O M A T E R I A L S 

T h e technological appl icat ions of N L O phenomena have been the d r i v i n g force 
beh ind the search for materials w i t h appropriate properties. T h e S H G and the t h i r d 
harmonic generation ( T H G ) processes are among some of the fami l ia r N L O processes 
w h i c h are rout ine ly used i n frequency up-conversion i n modern lasers. F r o m two op
t i c a l beams of frequencies, u\ and u2, a t h i r d beam at frequency u$ can be generated 
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1. KARNA & YEATES Theory and Modeling 9 

v i a op t i ca l parametr i c up-conversion or down-conversion. Other more ambit ious ap
pl icat ions of N L O processes are i n target recognit ion and image reconstruct ion v i a 
creat ion of a time-reversed beam by phase-conjugation, i n opt i ca l swi tch ing through 
the intensity-dependence of refractive index ( I D R I ) of mater ia ls , i n sensors and eye 
protectors v i a opt i ca l l i m i t i n g , a phenomenon that too uti l izes I D R I , and i n op t i ca l 
communicat ions . 

E a c h appl i cat ion of the N L O phenomena requires a certain m a t e r i a l characteris 
t i c that w i l l enable i t to funct ion efficiently according to the demands of a par t i cu lar 
device. A m o n g the more prac t i ca l requirements are the t h e r m a l , chemica l , o p t i c a l , and 
t e m p o r a l stabi l i t ies and processibi l ity for a desired device c on f i gura t i on . 3 4 W h i l e these 
requirements must be met for prac t i ca l appl icat ions of N L O phenomena, the issue 
of paramount importance remains the avai labi l i ty of materials w i t h sufficiently large 
N L O susceptibil it ies. T h e number of materials identif ied to be suitable for frequency-
converters, parametr i c osci l lators , and opt i ca l inter-connects on the basis of the ex
per imenta l character izat ion is rather l i m i t e d and those already discovered have found 
appropr iate technological appl icat ions 3 4 T h e success of the prac t i ca l rea l i zat ion of 
other N L O devices rests on the development of appropriate mater ia ls . It is i n this 
regard that a clear understanding of the relationships between the N L O properties 
and the s t ruc tura l features of materials serves as a guide. 

M u c h of our current understanding of the s t r u c t u r e - N L O property relat ionships 
of mater ia ls has emerged f rom a combinat ion of the exper imental observations and 
theoret ica l models to expla in them. A l t h o u g h , no single theoret ical model is capable 
of exp la in ing the mechanism of N L O phenomena i n a l l mater ia ls , most observations 
can be explained on the basis of the microscopic s tructure-property re lat ionships i n 
mater ia ls . 

1. T h e second-order materials 
A number of theoretical models have been proposed to describe the structure-

N L O property relationships i n second-order, or x^ mater ia ls . One of the earliest 
mode l is the so called bond parameter model.2 A c c o r d i n g to this mode l , the t o t a l 
induced po lar i za t i on i n the system is the sum t o t a l of the po lar izat ions induced i n 
i n d i v i d u a l chemical bonds between two atoms. A slight var ia t i on of this mode l is 
the bond charge model. 3 5 Col lect ive ly k n o w n as the bond additivity model, since 
i t is based on the assumption that the bond po lar i zat i on is addi t ive , this mode l 
has been quite successful i n exp la in ing the s t r u c t u r e - N L O property relat ionships i n 
inorganic crystals and tetrahedral ly coordinated s e m i c o n d u c t o r s . 2 ~ 4 , 6 I t , however, 
fails to exp la in the unusual ly large N L O susceptibil ities i n non-<7 type crysta l l ine 
mater ia ls or conjugated 7r-orbital s y s t e m s . 5 , 7 - 9 

Interest i n organic crystals as a viable second-order m a t e r i a l arose f rom a n u m 
ber of exper imental o b s e r v a t i o n s 3 6 - 3 9 i n the early 1970's which demonstrated that 
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10 NONLINEAR OPTICAL MATERIALS 

the N L O susceptibil it ies of these materials were comparable to or , i n some cases, bet

ter t h a n the best k n o w n inorganic m a t e r i a l s . 3 4 Since organic crystals are generally 

molecular i n nature , i .e. the chemical and phys ica l properties of organic crystals are 

closely re lated to the corresponding properties of the molecular units c ons t i tu t ing 

t h e m , we can wr i te f rom eq. (5) 

X ( 2 ) = £ N ( » > / 3 < » \ (14) 
P 

where, now p refers to a molecule as the microscopic un i t . W e can further s impl i fy 

the above equat ion assuming that due to weak intermolecular interact ion i n organic 

crysta ls , the tensor N ( P ) is independent of the site p and has a value close to un i ty . 

T h i s allows us to wr i te eq. (14) as 

X ( 2 ) = £ / ? ( p ) . (15) 
P 

Stated otherwise, the macroscopic second-order opt i ca l susceptibi l i ty x̂ 2* of organic 
crystals is a s imple geometrical superposit ion of i ts molecular hyperpo lar izab i l i t i es . 
A l t h o u g h overs impl i f ied , eq. (15) provides a means to opt imize x^ by su i tab ly m o d 
i f y ing /3 of an organic molecule. T h e question we need to answer now is : H o w do we 
opt imize (here maximize) (5 for organic molecules? In order to seek an answer to this 
quest ion , we need to know the or ig in of microscopic nonl ineari ty i n organic molecules 
a n d establ ish some phys i ca l parameters that can be sui tably tunned to design and 
develop mater ia ls w i t h large x^ • 

M u c h of the progress toward establ ishing the or ig in of /3 and i ts re lat ionships 
w i t h the electronic structure and spectrum i n conjugated organic molecules was made 
f rom the works of G o t t , 3 8 O u d a r et a l , 4 0 - 4 5 and Levine and B e t h e a . 4 6 - 5 1 F r o m the 
powder S H G measurements 5 2 on a number of aromat ic crystals , G o t t 3 8 f ound that 
the compounds i n which a polar izable and highly induct ive substituent group, such 
as a n i t r o ( - N O 2 ) group, is coupled to the aromat ic r i n g has the highest N L O suscep
t i b i l i t y . Such compounds have h igh opt i ca l po lar izab i l i ty and re lat ively h igh dipole 
moment . T h e observation by G o t t 3 8 demonstrated an in t imate re lat ionship between 
the induct ive effect and microscopic opt i ca l nonl inearity , later explored i n de ta i l by 
O u d a r et a l 4 0 - 4 5 and Lev ine and B e t h e a . 4 6 - 5 1 In the case of monosubst i tuted aro
m a t i c compounds , O u d a r and C h e m l a 4 0 argued that a substituent rad i ca l ( R ) d istorts 
the 7T e lectron c loud of the aromat ic r ing ( M ) and creates an in terna l electric field E # 

which induces a dipole moment fiR = a M E / j , where OLM is the l inear po lar i zab i l i t y of 
the parent molecule. In the presence of the external optical - f ie ld E ( r , J ) , the induced 
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1. KARNA & YEATES Theory and Modeling 11 

po lar i za t i on contains a t e rm which is quadrat ic i n ER wh i ch leads to second-order 

po lar i zab i l i ty PM-R ° f the subst i tuted system, given by 

PM-R = 3(2K)»R, (16) 

where 7 M represents the third-order or the second-hyperpolar izabi l i ty of the aro
m a t i c molecule. N o w , i f the molecules are al igned i n the c rys ta l such that a l l the 
po lar (substituent) groups point i n the same d irect ion , the above PM-R w i l l lead to 
a second-order macroscopic susceptibi l i ty x^ f ° r the compound. L e v i n e 4 6 had also 
arr ived at a s imi lar expression for the substituent induced P s tar t ing f rom a pure ly 
q u a n t u m mechanica l arguments. Note that the vector part of /3 is para l l e l to fiR. 

E q u a t i o n (16) has a number of far reaching consequences toward mode l ing 7r-electron 
conjugated x^ mater ia ls . F i r s t , i t tells us that PM-R OC IIR. Since fiR depends on the 
strength of the substituent-7r-electron interact ion , the larger the induct ive effect of a 
subst ituent rad i ca l the greater the value of PM-R- Second, i t lets us modulate P i n 
terms of the l inear po lar izab i l i ty a and the second-hyperpolar izabi l i ty 7 as J3 oc (7 /o j ) . 
T h e second-hyperpolar izabi l i ty 7 of the conjugated systems is k n o w n to have unusu
a l ly large value and increases more quickly t h a n the l inear po lar i zab i l i ty a w i t h the 
increase i n the 7r-electron c h a i n - l e n g t h . 5 3 - 5 5 Therefore, the second-order po lar i zab i l 
i t y should also have large value. Furthermore , the value of (3 should increase r a p i d l y 
w i t h the 7r-electron chain length . F i n a l l y , eq. (16) also lets us determine the sign of 
0-

T h e above concept was later extended by L e v i n e 4 8 and O u d a r 4 4 ' 4 5 to doubly sub
s t i tu ted benzene molecule where one substituent was electron donor (D) and the other 
subst ituent was electron acceptor (A). It was reasoned by L e v i n e 4 8 that an intramolec

ular charge transfer ( I C T ) between the donor and the acceptor group that leads to 
significant spectral shift i n charge-transfer complexes 5 6 could also lead to considerable 
enhancement of the second-order po lar izab i l i ty /3. F r o m the exper imenta l measure
ments on ani l ine , nitrobenzene, and nitroani l ine w i t h the amino ( - N H 2 ) a n d the n i t r o 
( - N O 2 ) groups at ortho, meta, and para posit ions to each other , L e v i n e 4 8 showed 
that due to a strong D - A I C T interact ion i n para -n i t r oan i l ine ( p - N A ) molecule , its 
P value was roughly 3 times larger t h a n that of the orJ / io -nitroani l ine ( o - N A ) and 5 
t imes larger t h a n that of the me /a -n i t roani l ine ( m - N A ) . Fur thermore , the P value of 
p - N A was an order of magnitude larger t h a n the corresponding value of the mono-
subst i tuted ani l ine and nitrobenzene molecules. 

T h e qual i tat ive model re lat ing the I C T and P value was later given a quant i ta t ive 
treatment by O u d a r and C h e m l a . 4 3 These authors proposed that i n an I C T molecule, 
such as p - N A , the P value can be represented by 

P = Pct + Padd, (17) 
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12 NONLINEAR OPTICAL MATERIALS 

where, /3ct represents the contr ibut ion to /3 f rom the charge transfer ( C T ) state and 
(3add is the contr ibut i on of the benzene ring-substituent interact ion . T h e n , by m a k i n g 
use of the exper imental and q u a n t u m chemical results of L u t s k i i and G o r o k h o v a , 5 7 

which showed that the C T state of p - N A result ing from the transfer of electronic 
charge f rom the nonbonding nitrogen o r b i t a l of the amino ( - N H 2 ) group to the vacant 
o r b i t a l of the n i t ro ( - N O 2 ) group was the first excited state of the valence m a n i f o l d , 
these authors assumed that (3ct could be described by the contr ibut i on f rom this 
(lowest excited) state. T h u s from eq. (7), /3ct for the S H G of a fundamenta l beam of 
angular frequency u can be w r i t t e n as 

B 3e 2 f t 2 AEig 
P c t 2 m ( A E l g - 2ku)(AElg + 2hu>) (AElg - hu){AElg + hu)hg 1 ' 

where, f\g and Afi\g are, respectively, the osci l lator strength and the dipole moment 
difference between the ground state and the first excited state, defined as 

fl9 = ^AElg<g\r\l>, (19) 

and 
A / z l 5 = < l | r | l > - < < 7 | r | < 7 > . (20) 

In eq. (17), ftadd is obtained f rom eq. (8) by s u m m i n g over the states other t h a n the 
lowest one (1) . O u d a r and C h e m l a 4 3 used the exper imental values of AE\g and f\g 

and theoret ical values of to estimate (3ct for the three isomers (o, m,p) of n i t roan i l ine . 
T h e y also calculated fiadd for these molecules from the results of nitrobenzene and 
ani l ine using the additive model for subst i tuent -r ing hyperpo lar izab i l i ty and found 
the rat io /3ct/fiadd for o - N A , ra-NA, and p - N A to be 5.1, 1.29, and 5.6, respectively. 
T h e y also found that the order i n the t o ta l measured 0 for the three isomers of N A 
was the same as the order i n their respective /3ct. Fur thermore , t o t a l 0 and /3ct had 
the same sign as the la t ter being the same as A / / i ) 5 . 

T h e above findings of O u d a r and C h e m l a 4 3 have a number of i m p o r t a n t i m p l i 
cations, (a) F i r s t , i t shows that the contr ibut ion from I C T to /3 i n p - N A amounts to 
more t h a n 80%. (b) Second, even for a n o n - I C T molecule conta in ing donor-acceptor 
subst i tuents , such as o - N A and ra-NA, the contr ibut ion to (3 f rom the single lowest 
state amounts f rom 50% to 80% of the t o ta l value, (c) W h e n 0\g is the dominant 
c o n t r i b u t i o n , the sign of the j3 can be deduced from the sign of Afj,ig. T h i s leads to 
the poss ib i l i ty of describing the second-order N L O effects i n terms of the exc i ta t i on 
and corresponding charge transfer between two states, the ground state (g) and the 
lowest excited state (1) of a molecule. Such a possibi l i ty has been the foundat ion 
of what is popu lar ly k n o w n as the ' two-level mode l ' . T h i s oversimpli f ied mode l has 
been quite successful i n describing the mechanism of second-order N L O effects i n the 
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1. KARNA & YEATES Theory and Modeling 13 

m a j o r i t y of organic sol ids, despite i ts obvious fai lure to account for the dispersion of 
op t i ca l nonl inear i ty close to a resonance . 5 1 

It should be noted that while the two-level expression (eq. (18)) does y i e ld a good 
est imate of the second-order N L O po lar izab i l i ty /?, the second t e r m of eq. (17), (3add, 

that incorporates the contr ibut ion from a l l other states i n the valence mani f o ld must 

be inc luded for a quant i tat ive predic t ion . Experience has s h o w n 5 1 that a two- level 
mode l does not only overestimate the magnitude of /3 but m a y also y ie ld incorrect 
s ign. Therefore, care must be exercised i n associating too m u c h importance to the 
second-order N L O response of materials based on the results of a two-level mode l 
alone. 

T h e second-order N L O effects i n organic structures also show a certa in depen
dence on the 7r-electron conjugation length. A n early exper imental work of D u l c i c et 
a l 5 8 on a series of I C T molecules i n which the D and A groups were separated by 
different lengths of 7r-electron conjugated cha in , suggested that 

P<xL2. (21) 

Here , L is the conjugation length of the chain and can be considered as p r o p o r t i o n a l 
to the number of the carbon-carbon double bond ( - C = C - ) separating the D and the 
A group. T h i s effect, though central i n the model ing of th ird -order organic mater ia l s , 
has not been fu l ly explored i n the mater ia ls . 

So far our discussion has been concerned w i t h the N L O susceptibi l i ty as a func
t i o n of the microscopic hyperpo lar izab i l i ty of a single molecular s tructure . A s is we l l 
k n o w n , a molecular structure w i t h large microscopic /3 does not necessarily lead to a 
c rys ta l w i t h large x^- T h e most popular example is the p - N A molecule. Despite the 
large f$ value that this molecule possesses, i t fails to display S H G i n the crysta l l ine 
f o rm because i t has a centrosymmetric structure . Therefore, factors other t h a n the 
microscopic j3 of a single molecular species also needs to be considered i n the mode l ing 
and design of N L O mater ia ls . 

Lev ine and B e t h e a 4 9 ' 5 0 first recognized that inter-molecular interact ions and 
chemical bond- format ion also play impor tant roles i n determining the second-order 
N L O susceptibi l i ty of organic solids. These authors found that the /3 value of organic 
molecules measured i n polar solvents were 20% to 30% larger t h a n the correspond
i n g value measured i n nonpolar solvents. Fur thermore , the j3 value increased w i t h 
the concentrat ion of the polar solvent. T h e concentration-dependence of /3 i n asso
c ia t ing l iquids , such as methanol and water , also indicated that the hydrogen-bond 
f o rmat i on increased the value of /? by substant ia l amount . In other cases, for exam
ple the pyridine-12 m i x t u r e , the large j3 value could be only explained on the basis 
of inter-molecular charge transfer ( I M C T ) between I 2 and pyr id ine molecules. These 
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14 NONLINEAR OPTICAL MATERIALS 

observations led Lev ine and B e t h e a 4 9 ' 5 0 to develop a model based on purely electro
stat ic considerations for the microscopic nonl ineari ty of an interact ing molecule A i n 
the presence of other molecular species B . U s i n g their mode l , a general expression for 
the (3 value of a molecular species A can be w r i t t e n as 

0=Pa + 0tt+P$+pM+0IMCT. (22) 

Here , (3g is the f i rs t -hyperpo lar izabi l i ty of an isolated (gas-phase) molecule A , (3^ is 
the cont r ibut i on f rom the dipolar interact ion between two A molecules, is the 
c o n t r i b u t i o n f rom dipo lar interact ion between molecules A and B (B ^ A), f3hb is the 
c o n t r i b u t i o n f rom hydrogen-bond format ion , and 0IMCT is the I M C T c o n t r i b u t i o n . 
E q u a t i o n (22) provides a useful guide for model ing second-order N L O mater ia ls . B y 
m o d u l a t i n g the intra-molecular as wel l as the inter-molecular terms of eq. (22) i t 
w o u l d be possible to design and develop materials w i t h sui tably large (3 values and 
appropr iate bu lk structure to y ie ld large x ^ • 

2. T h e t h i r d - o r d e r materials 

T h e theory and mechanism of the third-order N L O processes i n metals , inor 
ganic crysta ls , and semiconductors are rather wel l understood. M o s t of the observed 
N L O phenomena i n these materials can be described using eqs. (6) and (8) and treat 
i n g / , m, n, etc. as the virtual states of the s y s t e m . 2 - 4 ' 6 T h e s i tuat i on w i t h organic 
mater ia ls is different, t h o u g h . 5 ' 3 4 Despite the numerous exper imenta l observations 
and theoret ical calculations made i n the past two decades on the th ird -order N L O 
effects i n v o l v i n g organic molecules and po lymers , 5 the knowledge about their phys i ca l 
mechanism s t i l l remains l i m i t e d . 

Interest i n organic compounds as potent ia l ly useful th ird -order or x ^ m a _ 

ter ia ls , as they are popular ly k n o w n , arose f rom the exper imental observation by 
H e r m a n n et a l 5 3 of anomalously large values of 7 ( T H G ) and x ^ ( T H G ) for a l l -
trans f3-carotene molecule and /3-carotene glass, respectively. T h e large value for 
7 ( T H G ) = ( 8 ± 4) X 1 0 - 3 3 esu of /^-carotene molecule, which belongs to the polyene 
f a m i l y and has 11 carbon-carbon double bonds i n its quasi-one-dimensional c h a i n , 
could not be accounted for on the basis of the bond -add i t i v i ty schemes. Since, the 
b o n d - a d d i t i v i t y models successfully describe the observed nonl ineari ty i n a bonded 
molecules and sol ids, H e r m a n n et a l . 5 3 concluded that the or ig in of the observed N L O 
effects i n the /^-carotene molecule as wel l as the glass lies i n the h igh ly delocalized TT 

electron c loud of this system. 

It is i m p o r t a n t to note that whi le the 7r-electron charge also plays c ruc ia l role 
i n the second-order effects as discussed i n the previous section, the mechanism of the 
two contr ibut ions are different. T h e effect of TT electron d e r e a l i z a t i o n on the second-
order N L O properties is not intrinsic, because there some external p e r t u r b a t i o n , 
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1. KARNA & YEATES Theory and Modeling 15 

for example D - A subst i tu t i on , is required to create appropriate s y m m e t r y i n the 
7r electron c loud. N o such perturbat ions are needed for th ird -order effect, where a 
delocalized 7r-electron c loud direct ly affects the N L O response. 

T h e observations by H e r m a n n et a l 5 3 received further support f rom the theo
re t i ca l analysis of (hyper)polar izabi l i t ies of 7r-electron conjugated chain by R u s t a g i 
and D u c u i n g . 5 4 In their study, what is now a classical work , R u s t a g i and D u c u -
i n g considered the 7r-electron chain of 2 N electrons as a one-dimensional box of 
l ength 2 L . T h e n , by using the Rayleigh-Schrodinger per turbat i on theory for this free-
electron system, they were able to show that the l inear po lar i zab i l i ty a and the 
second-hyperpolar izabi l i ty 7 increased much faster t h a n l inear ly as the chain- length 
increased. T h e y derived the relations 

8 X 4 (23) 3 a 0 7 r 2 i V 

and 
2 5 6 X 1 0 . 

7 45a 3 e 2 7r6 jV5 ' 1 } 

between the (hyper)polarizabi l i t ies and the length of the 7r-electron cha in . In the 
above equations ao is the B o h r radius and e is the electronic charge. N o w , assuming 
that N <x L, eqs. (23) and (24) can be w r i t t e n as 

a oc L3 (25) 

and 
7 c x £ 5 . (26) 

T h e theoret ical analysis of R u s t a g i and D u c u i n g was exper imental ly confirmed by 
H e r m a n n and D u c u i n g 5 5 for a number of conjugated polymers . T h e va l id i ty of the 
R u s t a g i - D u c u i n g equation for the x-electron chain- length dependence of 7 (eq. (26)) 
has been extensively invest igated i n the recent years by increasingly sophist icated 
q u a n t u m mechanica l m e t h o d s . 5 9 - 6 5 A l t h o u g h not a l l calculations agree on a f i f th 
power dependence of 7 on L , this relat ionship has proved to be one of the most useful 
guides for mode l ing th ird-order N L O active organic p o l y m e r s . 5 ' 7 ' 8 

R u s t a g i and D u c u i n g 5 4 also introduced an impor tant concept of bond-alternation 

( B A ) effect on the third-order N L O susceptibi l i ty of conjugated systems. These au 
thors reasoned that electrons i n polyenes conta in ing alternate carbon-carbon single-
b o n d and double-bond experience a periodic potent ia l which makes t h e m less mobi le 
(po lar izable ) . Therefore, i n such systems the increase of 7 w i t h the chain- length w i l l be 
less r a p i d t h a n i n a free-electron system. Beyond a certain l ength , the B A i n polyenes 
decreases and eventual ly becomes homogeneous w i t h the carbon-carbon bond- length 
somewhere between a single-bond and a double-bond. T h u s , i n polyenes, the 7 value 
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16 NONLINEAR OPTICAL MATERIALS 

w i l l i n i t i a l l y increase w i t h the bond- length but eventually level off and remain con
stant at i ts po lymer ic l i m i t . A l t h o u g h not s t r i c t ly true , since even polydiacetylene 
( P A ) has a f inite B A property , this s imple theory has since h a d a profound effect 
on the theoret ical and exper imental research related to the th ird-order N L O organic 
p o l y m e r s . 5 ' 7 ' 8 

B e y o n d the conjugated 7r-electron effect and chain- length dependence of 7 i n 
organic systems, there has been l i t t l e new development establ ishing the s tructure -
N L O property relat ionships . A coupled anharmonic osci l lator ( C A O ) mode l recently 
in troduced by P r a s a d et a l 6 6 correctly accounts for dependence of the band-gap, l inear 
po lar i zab i l i t y a , and second-hyperpolar izabi l i ty 7 on the number of repeat units i n 
conjugated organic molecules and polymers . Since the expl ic i t details of the repeat 
units are not required, this theory can be used for ol igomeric chains of polyene or a 
po lymer w i t h large repeat units such as fused aromat i c rings. T h i s theory, however, 
assumes a single resonance frequency corresponding to a two-level mode l and a single 
coupl ing constant to represent the 7r-electron d e r e a l i z a t i o n throughout the o l igomeric 
series. T h u s , for a quant i tat ive t reatment , par t i cu lar ly in the short -chain polyenes 
where a two-level model is not v a l i d , the C A O model may not y i e ld accurate results . 
However , for polymers and oligomers of large chain- length, the C A O model provides a 
phys i ca l ly useful and computat iona l ly inexpensive method to relate th ird -order N L O 
po lar i zab i l i t y w i t h the overal l structure of the system. 

Recently , M c W i l l i a m s and S o o s 6 7 have proposed an inter-chain mechanism for 
the th i rd -order nonl ineari ty of conjugated polymers . A c c o r d i n g to their ca lcu lat ions , 
the N L O suscept ibi l i ty for T H G i n conjugated polymers has considerable c o n t r i b u t i o n 
f rom the matr ix-e lements representing inter - chain interact ion . A l t h o u g h a s tudy by 
G u o and M a z u m d a r 6 8 raises questions about the va l id i ty of this mechanism, a number 
of recent studies performed on the clusters of conjugated m o l e c u l e s 6 9 - 7 1 support the 
view that inter -molecular interact ion may have significant effect on the th i rd -order 
N L O susceptibi l i ty . A geometry which resembles the structure of graphite i n the sense 
that the planar-conjugated molecules are stacked on each other , has been found to 
y i e ld very large component of 7 i n the direct ion of the s t a c k . 6 9 - 7 1 

T h e geometry of the repeat units i n a po lymer has also been found to have 
significant effect on the va lues . 7 2 Theoret i ca l studies on the ol igomeric d ipheny l -
benzobisoxazole ( P B O ) and diphenylbenzobisthiazol ( P B T ) molecu les 7 2 ind icate that 
7 values i n a p lanar geometry are signif icantly larger than those i n a nonplanar ge
ometry . T h i s effect can be a t t r ibuted to a free-electron type structure for a near ly 
p lanar-conjugated system as opposed to the two-dimensional periodic wel l type struc 
ture i n twisted-chain which introduces a break i n the free-movement of electrons. T h e 
geometr ical i somerism (cis, trans) has also been identif ied as one of the i m p o r t a n t 
factors inf luencing the third-order N L O effects of conjugated systems. A n isomer that 
allows greater number of resonance structures (e.g. trans isomer of P B O and P B T ) 
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1. KARNA & YEATES Theory and Modeling 17 

and therefore better electron d e r e a l i z a t i o n has considerably enhanced value of 7 

t h a n that hav ing smaller number of resonance structures (e.g. cis isomer of P B O and 
P B T ) . 

I V . N L O E F F E C T S I N S I L I C A G L A S S 

S i l i c a glass is a relatively new arr iva l as an efficient N L O m a t e r i a l . T h e first 
S H G i n a commerc ia l single-mode Ge doped glass fiber was observed by Osterberg 
and M a r g u l i s . 7 3 T h e relatively h igh efficiency (3% peak power conversion) of the S H G 
observed i n their experiment was unusual , considering the fact that the structure of 
glass is k n o w n to be a continuous random network ( C R N ) 7 4 of te trahedra l ly bonded 
Si and 0 atoms w i t h a zero net dipole moment . In the experiment of Osterberg and 
M a r g u l i s 7 3 the second-harmonic (SH) signal of the fundamental I R beam was not 
produced i n the beginning. It was only after a steady i l l u m i n a t i o n of the fiber for a 
certa in per iod of t ime that the S H signal appeared and grew i n intensi ty w i t h t i m e , 
eventual ly reaching a m a x i m u m of 3% of the input power. 

Stolen and T o m 7 5 proposed a mechanism of the second-order N L O effect i n 
glass whi ch involved permanent photoinduced changes i n the fiber. A c c o r d i n g to this 
mechanism, the fundamental beam creates a dipole field which orients the defects 
i n the structure , thus produc ing a direct , albeit weak, dipole-al lowed response. T h e 
fundamenta l and the S H signals then interact v i a a third-order N L O process to f orm a 
strong periodic dc field which produces add i t i ona l or ientat ion of the defects. D u r i n g 
this process the fiber organizes itself to accomplish phase m a t c h i n g , thus y ie ld ing 
efficient S H G . In order to demonstrate the va l id i ty of this mechanism, Stolen and 
T o m 7 5 used a seeding beam of S H frequency and a fundamental to create a strong 
dipole- f ield. T h e y observed the S H signals when the seeding beam was removed after 
5 minutes of i r r a d i a t i o n . T h e power conversion efficiency of the S H signal was the 
same (3%) as observed by Osterberg and M a r g u l i s . 7 3 However, no S H G was observed 
after 12 hours of the preparat ion of the sample and wi thout the seeding l ight . T h i s 
ind i ca ted that indeed some chemica l /phys i ca l changes are induced i n the structure 
of the fiber by the combinat ion of the seeding beam and the fundamenta l beam that 
leads to efficient S H G . 

Since then , S H G of I R l ight has been observed i n poled fused s i l i ca g l a s s 7 6 a n d i n 
t h i n - f i l m s i l i ca glass wave-guides . 7 7 A number of mechanisms have been p r o p o s e d 7 8 , 7 9 

to exp la in the bui ld -up of the periodic dc field i n s i l i ca glass that leads to a nonvan-
i sh ing However, none of these theories addresses the microscopic mechanism of 
second-order N L O process i n s i l i ca glass. It is generally b e l i e v e d 8 0 that the in t r ins i c 
defects 8 1 such as the E' center and oxygen-oxygen peroxy bonds ( -0 -0 - ) or extr ins ic 
ones created by the dopants and i m p u r i t i e s 8 2 or a combinat ion of b o t h , w h i c h create 
short-range domain structures of n o n - C R N s i n s i l i ca glass, m a y be responsible for 
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18 NONLINEAR OPTICAL MATERIALS 

the observed S H G . However, the exact nature of these defects and the mechanism of 

their p a r t i c i p a t i o n i n the second-order N L O processes i n s i l i ca glass based mater ia ls 

remains to be determined. 

Cons ider ing the impact of Si and S i02 on the electronics industry , i t can only 

be ant i c ipated that w i t h an improved knowledge of the s t r u c t u r e - N L O property re

la t i onsh ips , amorphous S i02 based materials m a y also prove to be the best yet N L O 

m a t e r i a l for device appl icat ions . 

V I . S U M M A R Y 

A s we have t r i ed to emphasize, the d r i v i n g force for the interest i n N L O mater ia ls 

is their app l i ca t i on to emerging technologies. N L O processes are extremely c o m p l i 

cated , however, and what prevents the real izat ion of these technologies is a very basic 

lack i n understanding of structure-property relationships i n N L O mater ia ls . T h e o r y 

and mode l ing can provide a powerful means to explore these relat ionships through 

i so la t i on of phenomenon, interpretat ion of exper imental d a t a , and development of 

a microscopic understanding of macroscopic phenomena. T h e overal l goal is to f ind 

a method for intell igent materials design. M o s t model ing efforts to date have con

centrated on pred ic t ing the magnitude of the microscopic N L O response functions ft 

a n d / o r 7 by q u a n t u m mechanical methods. It should be emphasized, however, that i n 

some cases, especially those requir ing second-order responses, i t is not the magni tude 

of the hyperpolar izabi l i t ies alone that determines the appl i cab i l i ty of the m a t e r i a l . 

R a t h e r , secondary properties such as thermal a n d / o r mechanica l s tabi l i ty , or a com

b i n a t i o n of properties often determine the su i tab i l i ty of a N L O m a t e r i a l for device 

app l i ca t i on . In such cases, theory and model ing can s t i l l p lay a c ruc ia l role by p r o v i d 

i n g an enhanced understanding of materials properties. It is i m p o r t a n t to note t h a t , 

whi le the accuracy of q u a n t u m chemical techniques used i n mode l ing N L O mater ia ls 

is c ruc ia l for the re l iab i l i ty of the predicted results, i t is not essential for developing 

an understanding of the under ly ing physics i n terms of i ts o r i g i n , mechanism, and 

s t r u c t u r a l dependence. Of ten , i t is sufficient to ob ta in a rel iable pred ic t ion of the 

qual i tat ive trends among groups of molecules or related structures to isolate poten

t i a l l y i m p o r t a n t mater ia ls . In a l l cases, however, a close tie between c o m p u t a t i o n a l 

mode l ing and exper imental characterizations w i l l lead to a faster and more g loba l 

understanding of mater ia ls N L O and other properties appropriate for technological 

appl i cat ions . 
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Chapter 2 

Can Quantum Chemistry Provide Reliable 
Molecular Hyperpolarizabilities? 

Rodney J . Bartlett and Hideo Sekino 

Quantum Theory Project, Departments of Chemistry and Physics, 
University of Florida, Gainesville, FL 32611-8435 

We analyze the evolution of first principle molecular theory in obtaining 
reliable values of molecular hyperpolarizabilities. Such quantities place 
severe demands on the capability of quantum chemistry, as large basis 
sets, frequency dependence, and high levels of electron correlation are 
all shown to be essential in obtaining observed, gas phase hyperpolar
izabilities to within an error of 10%. Ab initio Hartree Fock results are 
typically in error by nearly a factor of two, while the errors due to the 
neglect of frequency dependence average ~10-30% depending upon 
the particular process. It is also shown that for small molecules, stan
dard semi-empirical approaches, like INDO and INDO/S, will often not 
even give the correct sign for hyperpolarizabilities. It is demonstrated 
that using state-of-the-art correlated, frequency dependent methods, it 
is possible to provide results to within 10%. Excluding any one of the 
essential elements, though, destroys the agreement. 

In the late 70's, one of us (RJB) became interested in molecular hyperpolarizabilities 
as the essential element in non-linear optics (NLO) when Gordon Wepfer at the Air 
Force Office of Scientific Research called attention to J. F. Ward's results from dc-
induced second harmonic generation (dcSHG) experiments and the enormity of their 
discrepancy with theoretical results. Tables 1 and 2 are extracted from a slightly later, 
1979, paper of Ward and Miller (1) demonstrating the problem. 

Not only was the existing theory results of the time tvpically in error by a 
factor of 3 to 5 in magnitude for the electric susceptibility, , but even the signs 

were frequently wrong. (The sign is positive if the measured quantity is 
positive, where μ is the permanent dipole moment.) When experimental numbers 
were obtained by other techniques, which should only differ by different dispersion 
effects that are typically less than 10%; they, too, had little correspondence with the 
dcSHG data. Note from Table 1 the -3500 value for NH3 from refractivity virial data 
compared to -209±5 for the dcSHG, 

0097-6156/96/0628-0023$18.75/0 
© 1996 American Chemical Society 
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24 NONLINEAR OPTICAL MATERIALS 

Table 1 x\\ >n units of 10~~33 esu/molecule. Theoretical values f rom various 
molecular orbital calculations — semi-empirical (SE), uncoupled Hartree-Fock 
( H F ) , and coupled Hartree-Fock ( C H F ) — and a single other experimental value 
are included for comparison. The sign of fix^ is unambiguously determined by 
the experiment and is independent of the sense chosen for the molecular z axis. 
This table extracted from J . F . W a r d and C . K . M i l l e r . Adapted from ref. 1. 

THEORY 
Other 
EXP x [ , 2 ) SHG Semi-

Empirical 
Uncoupled 

HF 
Coupled HF 

Other 
EXP 

c o + 0.112 
±0.005 

+129 ±14 -43.5 b 

(+95)d 

+879 c 

+420 c 

+387 c 

-438 e 

N O + 0.15872 
±0.00002 

+147 ±17 +47.7b 

H 2
+ S " 0.974 

±0.005 
-43 ±9 

N - H 3
+ 1.474 

±0.009 
-209 ±5 56.4 b -44.4 f 

- 6 5 . l f 

-19.0 f 

-15.6 h 

-40.8 h 

-35008 

H 2
+ 0 - 1.86 

±0.02 
-94 ±4 120 b 90.6 -52.5 f 

-79.2 f 

-21.9 f 

-51.6 h 

-48.0 h 

a Electric dipole moments in Debye units from Landolt-Bernstein, Zahlenwerte und 
Funktionen, Neue Serie, Vols. II/4 and II/6 (Springer-Verlag, Berlin) and Ref. 18. 
The sense of the NO moment is suggested by F. P. Billingsley II, J. Chem. Phys. 
63 2267 (1975); 62, 864 (1975). 

b N. S. Hush and M. L. Williams, Theoret. Chim. Acta (Berlin) (25), 346 
(1972). Signs for N H 3 and H 2 O are ambiguous. 

c J. M. O'Hare and R. P. Hurst, J. Chem. Phys. (46), 2356 (1967). 
d X{zzz (0;0,0) from A. D. McLean and M. Yoshimine, J. Chem. Phys. (46), 

3682 (1967). 
e S. P. Liebmann and J. W. Moskowitz, J. Chem. Phys. 54, 3622 (1971). 
f P. Lazzeretti and R. Zanasi, Chem. Phys. Lett. (39), 323 (1976) Note added 

in proof. Recent reconsideration of the sign of these entries yields the negative signs 
now shown here — P. Lazzeretti (private communication). Overall consistency is 
substantially improved by this change. 

8 Refractivity virial data from A. R. Blythe, J. D. Lambert, P. J. Petter and H. 
Spoel, Proc. R. Soc. (London) A 255, 427 (1960). 

h G. P. Arrighini, M. Maestro and R. Moccia, Symp. Farad. Soc. 2, 48 (1968). 
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2. BARTLETT & SEKINO Reliable Molecular Hyperpolarizabilities 25 

Table 2 x[| i n units of 10" 3 9 esu/molecule. Values f rom other dc-electric 
field-induced second-harmonic generation (dcSHG) , three-wave mix ing ( T W M ) , 
K e r r effect, and third-harmonic generation ( T H G ) experiments, along with 
theoretical results, are included for comparison. This table extracted from J . 
F . W a r d and C . K . M i l l e r (7). Adapted from ref. 1. 

y ( 3 ) 

dcSHG 
Ward& 
Miller 

dcSHG" TWMb Kerr THGC Theory 

H 2 65.2 ±0.8 79 - 4 7 d ± 5 80 ±12 34 e 

N 2 86.6 ±1.0 - 104 120 f ±10 107 ±17 

o 2 95.3 ±1.6 110 100 - - -
c o 2 111.9 ±1.3 - 192 750 f ±160 156 ±23 

C O 144 ±4 - 138 - - -
N O 235 ±7 - 322 - - -
H 2 S 865 ±22 - - - - -
N H 3 511 ±9 - - - - -
H 2 0 194 ±10 - - - - -

a Data from G . Mayer, C. R. Acad. Sci . B276, 54 (1968) and G . Hauchecorne, F. 
Kerberve* and G . Mayer, J . Phys. (Paris)32, 47 (1971), normalized using the d c S H G 
coefficient for argon from R. S. Finn and J . F. Ward, Phys. Rev. Lett.26, 285 (1971). 

b Data from W . G . Rado, Phys. L e t t . l l , 123 (1967), normalized using the d c S H G 
coefficient for argon from R. S. Finn and J . F. Ward, Phys. Rev. Lett. 26, 285 (1971). 

c J . F. Ward and G . H . C. New, Phys. Rev.185, 579 (1969). 
d A . D . Buckingham and B . J . Orr, Proc. R. Soc. (London) A305, 259 (1968). 
e Xzzzz (0;0,0,0) from A . D . McLean and M . Yoshimine, J . Chem. Phys. 46, 

3682 (1967). 
f A . D . Buckingham, M . P. Bogard, D. A . Dunmur, C. P. Hobbs and B . J . Orr, 

Trans. Fora. Soc.66, 1548 (1970). 
8 Xzzzz (0;0,0,0) from R. J . Bartlett and G . D . Purvis (private communication). 
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26 NONLINEAR OPTICAL MATERIALS 

In Table 2, the discrepancy among different experiments is even more apparent 
for x|| compared to other d c S H G values, three wave mixing ( T W M ) , Kerr effect, 
and third harmonic generation (THG) experiments. The theory is even off by about 
a factor of 2 from a static value for H2. The one reasonable theoretical number 
they cite is our static, correlated value for N 2 , one of our first (unpublished), that is 

(3) 
beginning to be in reasonable agreement with x\\ • 

This chapter, which is intended to be useful to experimentalists who are trying 
to assess the reliability of the theory, but also to theoreticians, as it provides an 
overview of the theory which can and has been used, addresses the demands that 
hyperpolarizabilities place on first-principle ab initio electronic structure theory; and 
the level required for the adequate evaluation of molecular hyperpolarizabilities. After 
doing some basic elementary perturbation theory that underlies all that is done, and 
which provides definitions and a framework for discussion, we w i l l explain the various 
levels of quantum chemical application, illustrated by numerical results we have 
obtained that emphasize the various approximations employed in electronic structure 
in its application to hyperpolarizabilities. We w i l l also demonstrate how the theory 
has necessarily evolved to provide a realistic treatment of such properties. 

The order of presentation wi l l follow our own odyssey that led us to introduce 
electron correlation into molecular hyperpolarizabilities (2,3), using, then new, many-
body perturbation theory ( M B P T ) methods (4,5); to make a prediction for the 
F H molecule, that had later ramifications (6,7); to use new coupled-cluster (CC) 
correlated methods including those augmented by triples (8,9); to explore vibrational 
polarizabilities in static electric fields (70); and to introduce frequency dependence 
by developing analytical derivative time-dependent Hartree Fock (TDHF) theory 
(11,12). The latter, which enables a first (decoupled) treatment of both the essential 
frequency dependent and correlation aspects of the problem (13), culminates in a 
uniform study of ten molecules (14). The correlation calculations were assisted by 
parallel developments in analytical derivative C C / M B P T theory (15-18). Finally, 
we coupled correlation and frequency dependence in the new equation-of-motion 
( E O M ) C C method for hyperpolarizabilities (19,20). B y taking this evolutionary 
viewpoint, we hope the current review wi l l complement the other recent excellent 
reviews (21-23) on the topic. 

The theory also offers different, conceptual viewpoints on hyperpolarizability 
evaluation and interpretation, and this degree of flexibility should be better appreciated 
when comparing theoretical numbers and addressing N L O design criteria. We w i l l 
conclude with some recommendations for some future developments in the continuing 
evaluation of predictive quantum chemical methods for N L O material design. 

Perturbation Theory of Molecular Hyperpolarizabilities 

The quantities of interest are the electric susceptibilities x[|2^ and x[|3^. In the gas phase 
experiments of interest here, there is no particular distinction between macroscopic 
and microscopic susceptibilities and the hyperpolarizabilities, as they are simply 
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2. BARTLETT & SEKINO Reliable Molecular Hyperpolarizabilities 27 

related. Those of particular interest are obtained from electric field (dc) induced 
second harmonic generation experiments (7). Namely, a sample of gas is subjected 
to a dc field (£ 0 ) and an optical electric field £cj(elu;t + e~ltJt) at frequency u, to 
induce a dipole moment at frequency 2a/. A l lowing for the various manipulations 
required to relate the molecular quantities to the laboratory fixed observables, 

2 - (1) 
X\ ( -2a/ ; o, u/ , UJ) = xf\~^\ o, a/, a/) + g ^ X | | 2 ) ( - 2 w ; w > 

X| 2 ^(-2a/ ;a / ,a / ) for second harmonic generation (SHG) is separated from 

X| 3 ^( -2a / ; o ,a / ,a ; ) , which is d cSHG, by studying fx2w as a function of T. Numbers 
relative to a standard, typically He gas, are obtained. Revisions of the He reference 
value cause some slight rescaling of the experimental numbers (22). Furthermore, 
we relate the susceptibilities to the molecular hyperpolarizabilities via, 

x[| 2 ) ( -2a; ;a; ,a; ) =/3||(-2a;; a/,a;)/2 

(3) ( 2 ) 

Xy \-2u\o,u,u) = 7\\{-2UJ\O,U,OJ)I§ 

= \ [(7«ii + Ttiit + 7u'ij)/15J 

where the Einstein summation convention is employed, meaning all repeated indices 
are summed, i.e. = idXx+tiyy+^zz- The parallel designation (||) means measured 
parallel to the dc field, while the (_L) component can be similarly obtained. A s 

and 7y are properties of molecules, they constitute the objective for first-principle 
quantum mechanical evaluation; the subject of this chapter. 

The basic idea underlying any treatment of a molecular response to an electric 
field, static or oscillatory, is the solution of the molecular Schrodinger equation in the 
presence of the field. We wi l l first consider the static case, generalizing the approach 
for frequency dependence in Section 7. Our perturbation eQ -W = e0 • ei^i is given 

i 
by the interaction of an electron e; at position f; with a static electric field, 

£o — £xoi> ~f" £yoj "4" ^zo^i (?) 

where eXOi £yo, and ezo are the field strengths in the JC, y, and z directions of magnitude 
In atomic units, e becomes minus unity, so we have a Hamiltonian, 

Wo) = H0 + £0-W = Ho-?o'Y,fi> ( 4 ) 

i 

where H0 consists of the usual kinetic energy, - ^ S ^ i a n c * potential energy, 
i 

" S ^ + f S ^ + ^ S composed of the electron nuclear attraction, the two-

electron, electron-electron repulsion operator, and the proton-proton repulsion. Greek 
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28 NONLINEAR OPTICAL MATERIALS 

letters indicate atoms and i,j electrons. W contains the negative sign. The solution 
to the time independent Schrodinger equation 

provides the ground, tj)0 = and excited states, {V**}. and associated eigenvalues, 
for the unperturbed molecule. Notice these are the exact, many-particle 

unperturbed states. 
We now seek a solution for the perturbed Hamiltonian in its ground state 

H{e0)Wo) = E{e0)*{e0) (6) 

The natural way to attempt a solution is perturbation theory. Hence, we expand, 
H(e0), ^{EO) and E(e0) in a perturbation series in E Q . For the time being, we w i l l 
assume the field lies solely in the z direction, so E X O = E Y O = 0 and E z o = e0. Then, 

(H0 + e0W) U 0 + £ 0 t f ( 1 ) + £oV> ( 2 ) + 4V> ( 3 ) + • • ) 
(7) 

= (E + e0E^ + £ ^ ( 2 ) + + e ^ d ) + . . .) 

A s the equality has to be true for any power of e0 (i.e. all quantities are linearly 
independent), gathering terms of a given power of e0 together, we obtain for e j ; 

(E0 - H0)TI>M = ( W - EW)TI>0 (8) 

(E„ - H0)^2) = (W- EP>)lP> - Efft+o (9) 

{E„ - Ho)^ = (W- E^y™ - E^i>o - ^ ( 2 V ( 1 ) (10) 

and for ei 

(E0 - « „ ) V > ( 4 ) = {W- E^y® - EPHo - E ^ ( 1 ) - £ ( 2 ¥ 2 ) (11) 

These are sufficient to take us through the electronic dipole moment, //, the dipole 
polarizability tensor, a , and the j3_ and 7, hyperpolarizability tensors. Multiplying on 
the left by (ip0\, and using the fact that (tp0\(E0 - H0) = 0, we have 

= mWtyo) (12) 

Similarly, we obtain 

£(2) = {^0\{W - = (1>o\W\ll>W) 

= (1>0\W\1>V>) = (^l)\W - E^\^) (13> 

E& = ^0\W\^) = (<i/>W\E0 - H0\iP{2)) - EWtyMtyW) 

for Ei 

for EI 
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2. BARTLETT & SEKINO Reliable Molecular Hyperpolarizabilities 29 

where we have used the intermediate normalization condition, (ip0\^m^) = 0 for m =j£ 
0. The second form comes from manipulations that demonstrate the 2n+l rule that an 
rfi1 order wavefunction wi l l determine E 2 n + 1 and the analogous 2n rule for even orders. 

Instead of straightforward perturbation theory, we can also derive these formulae 
from explicit differentiation of the expectation value of ^{s0) with respect to e0. 
From equation 6, we have the expectation value, 

E(e0)(*(e0)\*(£o)) = <*(e 0 )|«(e 0 )|*(e 0 )> 

and differentiation gives, 

(H(e0) - E{e0)) 
d£0f \dea 

dE 
de0 

(H{e0) - E(e0j) 

(14) 

(15) 

A s we want to evaluate this at e0 = 0, using (7i0 — E0)\tjj0) = 0, and its complex 
conjugate (c.c), gives 

£L-WKI*)L-<*|"'|*> 
This is simply a statement of the simple Hellman-Feynmann theorem that the deriva
tive of the energy is given as the expectation value of 

If we proceed to the higher derivatives, we w i l l obtain 

d 2 £ l 
dE] 11 
°£0 J £o=0 \ 

on 
de0 

dE 
+ c.c. 

or 
ld2E 
2 del £o=0 

= (i>o 
an 
ds0 

+ c.c. (17) 

(18) 

In third and fourth order, 

l&E 
Wo 

1 dzE~\ _ I on 
0eo 

1 diE~\ 

i d2j>\ _ l d ± 
2\dell~\de0 

&H 
de0 

dE 
de0 

dj>_ 
de0 

1 &j>\ 
3! del / 

(19) 

Clearly, this is simply perturbation theory, since up to a numerical factor, 
WW = *L>Em = f £ ^(2) = \^,EW = i g , etc. In other words, we use a 

McLaurin 's series expansion f o r E , E(e0) = E0+§^£0+^^p-£2
>+^^-el+-.. and 

instead of a straight perturbation series, which introduces the numerical factors 
that relate the perturbative energies to the derivatives E^ = ^ ^ j p r . 

We now define the electric properties as the electric dipole in the z direction: 

dE 
de0 ; =-^ = (̂ |S;|̂ ) = (^kl^)=£(1) (20) 
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30 NONLINEAR OPTICAL MATERIALS 

the dipole polarizability; 

(21) 

the first hyperpolarizability; 

del ~ P " 2 

and the second hyperpolarizability; 

dej - de0 del/-*'Y° 

W 

w 

V> ( 2 ) ) = 3 ! £ ( 3 > (22) 

That is, 

1 1 1 4 

E(e0) = E0 - fizezo - -yOLzzzZ0 - —ftzzz£zo ~ -^lzzzz£zo + • 

^ ( 3 ) \ = 4 ! £ ( 4 ) ( 2 3 ) 

(24) 

which gives the well known series. 
More generally, when all components are considered, with the Einstein summa

tion convention, we have 

E = E — \L{Ei0 — —yOLij£io£j0 — yPijkEioEjoEko ~ -^7ijkl£io£jo£ko£lo ~ • • • (25) 

or for the induced dipole moment, 

V>i{£o) = M°) + aij£jo + Pijk£jo£ko + \ilijkl£jo£ko£lo + . . . (26) 3! 

Whether the numerical factors are included determines the choice of conventions for 
polarizabilities. Ward and co-workers use the perturbative definition, meaning that 
£ ( 2 ) _ ^ £ ( 3 ) _ ^ a n ( j £ ( 4 ) _ ^ ^ e g^ yjhWt m e power series choice directly 
associates the derivatives with the polarizabilities, obviating the numerical factors. 
Since this choice has direct correspondence with the energy derivatives, it appeals 
more to theoreticians. 

To evaluate the polarizabilities, we require a knowledge of the perturbed wave-
functions (wavefunction derivatives). It is convenient to introduce the resolvent op
erator, 

R0 = (E0 - H0)-lQ (27) 

where Q represents the projector (Q2=Q) of all functions orthogonal to the unper
turbed reference, V'o- One such set consists of all other eigenfunctions of HQ (dis
crete and continuous), making Q = ^ / ( V , J ^ • F ° r t m s particular set, 

k?0 1 ' N 

 A
ug

us
t 1

5,
 2

01
2 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e:
 M

ay
 5

, 1
99

6 
| d

oi
: 1

0.
10

21
/b

k-
19

96
-0

62
8.

ch
00

2

In Nonlinear Optical Materials; Karna, S., et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1996. 



2. BARTLETT & SEKINO Reliable Molecular Hyperpolarizabilities 31 

R0\rk) = (E0 - 40)) V*)<3 = Q(Eo- 40)) Vi0)>- B y virtue of excluding 
V'o, the inverse Ro operator is well denned. In terms of the resolvent, 

V> ( 1 ) = Ro(w- E^)VO = RoWvo 

W(2) = R0(W - (28) 

v ( 3 ) = R o ( w - E^yv - RoEWwW 

etc., showing that all order wavefunctions are recursively computed from the prior 
ones. Knowing these solutions, we can compute the energy from 

= (1>0\W\il>M) (29) 

or explicitly, in a few cases, 

E&> = Wo\WR0W\i>0) 

£(3) = (i>0\WR0(w - E^RoWtyo) 

= (1>0\WRo(w - EM)RO(W - EM)ROW\1>0) - E^(^0\WR2
0W\i;0) 

(30) 
etc. 

The particular choice of expansion of ij)^ in the set of eigenfunctions of H0 leads 
to the well known sum-over-state (SOS) formulas for the z components, 

-fiz = (il>0\z\il>o) (31a) 

k^o &o - &k 

( * - t f > ) ( * - t f > ) 

~7zzzz — / J 

fe,/,m#o (EO - Ef?^ {EO - E\0^ [EO - Em^ 

>™zz <5 
{ E 0 - E ^ 

(3 Id) 
The other tensor elements are obtained from exchanging x and y with z in all distinct 
ways. Henceforth, we wi l l recognize that all practical molecular quantum chemical 
calculations employ a finite, discrete basis set, so from the beginning we are limited 
to this choice, and we need not consider any continuum. 
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32 NONLINEAR OPTICAL MATERIALS 

Evaluation of Static Hyperpolarizabilities 
From the above, it should be abundantly clear that in a basis the derivative approach, 
equations 20 to 23, and the SOS expressions, equation 31, are simply two equivalent 
ways of expressing polarizabilities. Furthermore, considering that the choice of 
excited eigenfunctions of H0 is just one choice for a complete set representation 
of the perturbed wavefunctions, {ip^}, the above SOS forms probably attract more 
significance in N L O than warranted. For example, since E0 - is the excitation 
energy, and since ( V ^ I V ^ ) is the z-component of the transition moment, it should 
be possible to evaluate au from equation 31b purely from experiment by knowing 
all electronic excitation energies and transition moments (including those for the 
continuum in the exact case). The problem is knowing them a l l — a very large number! 
Instead, attempts to estimate the SOS by the few known excitation energies and 
transition moments is likely to be very far from the true value (see our contribution 
later in this volume (24)). Note for the ground state, all contributions to from 
ip^ have the same sign, so there is no potential cancellation among the neglected 
contributions. The problem is further compounded for (3^ and 7 ^ , where in addition 
to transition moments from the ground to excited states, it is necessary to know the 
transition moments relating two excited states, and that information is hard to obtain. 
Note that can have either sign. j7777 also can have either sign, since although 
the lead term corresponds to (V>o |#o - ^o\i^) which must be negative (giving 
a positive contribution to 7 ^ ) , the second term is positive, attenuating the value 
of 7 ? m . Lacking a proof that the magnitude of one must be greater than the other, 
either sign is possible. 

From the above we have two viewpoints on the evaluation of static polarizabil
ities. We can either evaluate energy derivatives of the Schrodinger equation in the 
presence of the perturbation, or attempt some approximation to the SOS. Obviously, 
the former does not require any truncation. (As we wi l l see in Section 8 later, with 
proper handling neither does the finite basis SOS.) The simplest recipe for evalua
tion of the derivatives is to use what is called the finite-field technique. That simply 
means solve the Schrodinger equation in the presence of the perturbation by choosing 
a small finite value for e0 of 0.001 a.u., e.g. Adding an electric field quantity to HQ 

gives an unbounded H(e0) operator, and i f we obtain its exact solution, the lowest 
energy state would be the field ionized state, a molecular cation plus an electron; 
but in practice we must use a finite basis set for its solution which is effectively 
like putting the molecule into a box, and this gives a valid E(e0). Repeating the 
procedure at e0 = - 0 . 0 0 1 , we could obtain the dipole from the numerical derivative, 

E(E0) - E{-e0) 
2e0 

(32) 

The accuracy depends upon the size of the finite field strength. If it is too large, the 
numerical derivative is not very accurate, while i f too small, there is not a numerically 
significant change in E(e0). 

 A
ug

us
t 1

5,
 2

01
2 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e:
 M

ay
 5

, 1
99

6 
| d

oi
: 1

0.
10

21
/b

k-
19

96
-0

62
8.

ch
00

2

In Nonlinear Optical Materials; Karna, S., et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1996. 



2. BARTLETT & SEKINO Reliable Molecular Hyperpolarizabilities 33 

To obtain all /z, a , f3_ and 7, we need several more points, so we obtain 
expressions like 

A~4 = 5 [E(2ei0) - E(-2eio)] + [E(ei0) - E(-eioj\ + 0(e5
0) 

Janet = 4[E(ei0) + £ ( - e , - 0 ) ] - [E(2eio) - E(-2eioj\ - 6£(o) + 0(e«) 

See (2) for others. Note each expression is accurate to the next odd (even) order 
since only a , 7, e and /£, /3, 6 are interrelated (2). This exclusion of the next 
higher-order contribution greatly helps the precision of such a calculation. However, 
note that the energy needs to be accurate to a couple of significant digits better than 
efD i f we are to get /?„,. That is, i f £ t 0 =0.001, we require energies to be 10" 1 1 . If 
Sio =0.01, we would require at least 10' 8 . For 7 M I „ we would need 10" 1 0 to 10" 1 4 . A s 
molecular integrals in quantum chemical calculations are seldom much more accurate 
than 10 ' 1 2 , not to mention other parts of the calculation, finite field procedures for 
hyperpolarizabilities can raise serious precision problems. 

Another problem lies in the proliferation of tensor elements in P and 7. Many 
energy calculations involving field strengths in different directions are required to 
evaluate all the numerical derivatives, and at higher levels of sophistication these are 
quite expensive calculations. 

The solution to the above problem is to analytically evaluate the derivatives. The 
simplest is —\iz = (V,o|̂ |V,o)» which is just an expectation value. For the others, 
analytical means that while solving the Schrodinger equation for E, we also directly 
obtain all components of the derivatives, ||s $ ^ , > etc. in about an 
equivalent amount of time. This means we differentiate before evaluation by using 
equations 20 to 23 and the explicit solutions for the wavefunctions and derivatives, 
which are proportional to the perturbed wavefunctions given in equation 28. In a 
substantial formal and computational achievement of 30 years duration, primarily 
fueled by the necessity of analytical gradients for atomic displacements in molecules 
(15,25,26), such analytical procedures have been developed in quantum chemistry. 
Their limitation is that they have not been implemented for all methods. For example, 
any-order analytical higher derivatives with respect to electric field perturbations have 
been developed for the Hartree-Fock treatment of hyperpolarizabilities by exploiting 
the recursive nature of perturbation theory (11,27), equations 28, 29. For correlated 
methods, analytical second-order perturbative theory, [MBPT(2)] , derivatives are 
available for a and p_ (15). For other methods, even including highly sophisticated 
correlated methods like coupled-cluster theory (28), the induced dipole /i(e0) can be 
evaluated analytically, from which numerical derivatives provide a , /3, and 7 (13). 
In this way, at least one e0 or two to three orders of magnitude is gained in the 
precision of and 7. 

Note that equation 31 represents analytical expressions, too, since no finite field 
is involved in their evaluation. The latter viewpoint leads to the analytical evaluation 
of the (dynamic) polarizability using the equation-of-motion ( E O M ) C C method 
(20). Obviously, it would be ideal to be able to analytically evaluate third and 
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34 NONLINEAR OPTICAL MATERIALS 

fourth derivatives using such powerful C C correlated methods, but the theory and 
implementation has not yet been developed. 

Basis Sets and Hartree-Fock Theory 
Now that we know a way to calculate a static hyperpolarizability, we can consider 
other aspects of the calculation. The first approximation to consider is Hartree-Fock 
(HF), self-consistent field (SCF) theory. That is, we evaluate the energy and its 
derivatives for the perturbed Hamiltonian by obtaining the energetically best (lowest) 
single determinant solution, $ 0 = .A(<pi(l), <P2(2) • • • <£>n(rc))> to approximate r/>0. In 

N 
the absence of e0W, that means £ H F = ($o\Ho\$o), and further, H0~ HQ = ] T f(i) 

k=i 
N 

where / = h + ve^ and W ( l ) = £ / < p j ( 2 ) ^ * ^ ( 2 ^ 7 - . The effective one-
3=1 

particle operator ve^(l) is an average over the two-particle part. The orbitals {ipj} 
are the solutions /(l)y?j(l) = €j<Pj(l) where €j is the H F - S C F orbital energy (not 
electric field £ o r e hyperpolarizability!). Self-consistency is required by ensuring 
that the orbitals {ipj} used in ve**(1) i n / a r e self-consistent with the solutions. This 
model provides the usual molecular orbital (MO) approximation that underlies much 
of our conceptual understanding of molecules. This averaging procedure introduces 
the correlation error, which pertains to electrons' instantaneous interaction that keeps 
them apart. It corresponds to the perturbation V = ~ 2 v C ^ W » which 

*d 13 * 
we w i l l consider later in Section 6. The full Hamiltonian of equation 41 is thus 
H = H0 + e0W + V. 

The simplest way to consider doing a H F calculation of a polarizability is 
the finite-field procedure. That means that we compute the H F approximation to 
H = H0 + V + e0W where W is a one-electron operator for a small value of e0. 
Then, we w i l l obtain 

£ H F ( £ O ) = ($o(£o)\H(e0)\Mzo)) (34) 

where $ 0 ( £ 0 ) = A(<p£i(l)<p£2(2)... <Pen(n)) is the H F wavefunction and its compo
nent orbitals are all dependent on e0. Furthermore, 

/ e ( l ) W e ( l ) = e j ( £ 0 ) ^ ( l ) , (35a) 

/ e ( l ) = f0{l) + e0W(l) + vl"{l) (35b) 

^ e / / ( l ) = E / ^ ( 2 ) ^ ^ ^ ( 2 ) r f r 2 (35c) 

Obtaining J ^ H F ( ^ O ) at various values of e0 w i l l provide the perturbed energies from 
which the numerical derivatives may be obtained. This finite-field procedure is 
frequently called "coupled Hartree-Fock" (CHF) (29). 
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2. BARTLETT & SEKINO Reliable Molecular Hyperpolarizabilities 35 

Although it does not change the conceptual content or the numerical values (if 
done carefully!), the much more computationally convenient analytical equivalent, 
called coupled perturbed Hartree-Fock (CPHF) , can be developed by taking the 
derivatives before evaluation by expanding all the equations in perturbation theory 
and explicitly solving them for perturbed orbitals, ipj£ = (pj0 + £

0^p H , orbital 

energies, ej = ejo + e^- 1 * + • • •, and using vEJF = ve
0
ff + e0veffW + e2

QveffW + ... 

from which ^ H F ( ^ O ) = # H F + £ O ^ H F can be obtained. 
To avoid too much of a digression, we w i l l not present those equations here. 

Excellent treatments for the time-independent case are given elsewhere (27,30,31). 
This is also a special case for the time-dependent, T D H F , approach (11,32) discussed 
in Section 7. Suffice it to say that C P H F calculations are preferable to C H F , and 
several implementations are available. 

Even at the H F level, though, we have to pay close attention to the choice of 
basis set, that is the (usually) contracted Gaussian atomic orbital (AO) basis used 
to express the M O ' s . It is apparent that it is essential to have a large, flexible 
and polarized basis set for hyperpolarizabilities. The basis must correctly describe 
matrix elements of the long-range operator r (i.e. x,y,z) while the usual A O basis 
functions have been selected predominantly to describe the energy, which depends 
on shorter-range operators like \ and the kinetic energy operator. A basis like double 
zeta (DZ) would use 4s and two sets of p functions to describe the energy of a 
B , C , N , 0 , F , atom in a molecule, 2s for H . To provide adequate polarization to this 
basis, particularly to describe the more diffuse and directional part of the charge 
density, we need at least one or two sets of d-functions and probably more s and p 
functions. The P O L + basis (14,33), optimized to describe polarizabilities has a 5s3p2d 
distribution for B - F , and 3s2pld for H , and would be the minimum recommended for 
most hyperpolarizability determinations. The influence of basis set is illustrated in 
the behavior of the components of a and 7 for ethylene, shown in Table in. 

Notice that a minimum S T O - 3 G basis underestimates the H F - S C F dipole polar
izability by over a factor of 5, with double zeta (DZ) still being in error by ~ 3 0 % . 
The essential role of polarization functions is emphasized by the 6-31G+PD, mean
ing additional diffuse p and d functions on C and H (34), and the (5s3p2d/3s2pld) 
P O L + basis (14). 

The basis set effect is amplified dramatically for 7, where four products of 
x , 2/, and z are evaluated. Note that in inferior basis sets, including S T O - 3 G and D Z , 
7Jl, even has the wrong sign, differing from the better converged value by at least four 
orders of magnitude! However, once a few polarization functions are included, even 
as in the modest 6-31G+PD basis, convergence toward the Hartree-Fock solution is 
relatively good. The remaining differences between 7J and 0^|fcSHG a n d 7|f H G » which 
means dc-induced Second Harmonic Generation and Third Harmonic Generation, 
the potential experimentally observed quantities, lie in the frequency dependence 
neglected in the static H F calculation. We wi l l discuss that aspect later. Obviously, 
it, too, is numerically important in providing reliable theoretical predictions. 
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36 NONLINEAR OPTICAL MATERIALS 

Semi-empirical Methods 

The other numerical values use the I N D O (35) and spectroscopically parameterized 
INDO/S methods (36), (the latter is also known as Z I N D O (37)). L ike nearly all 
semi-empirical methods, I N D O assumes an underlying minimum Slater-Type-Orbital 
(STO) basis S C F description, which is close to that of STO-3G. In the I N D O case, 
the parameters are chosen to best reproduce the minimum basis S C F results. Hence, 
i f this were done successfully, results about on the level of S T O - 3 G would be 
obtained, clearly a level far inferior to that required for hyperpolarizabilities, and 
this is illustrated by the observed I N D O results. 

I N D O / S would appear to have a little better chance at obtaining reasonable values. 
Despite the minimum basis set description, which is clearly suspect, the spectroscopic 
parameterization is chosen to try to describe excitations to the low-lying excited states 
of molecules and their transition moments within a single excitation configuration 
interaction (CIS) description. After fitting parameters to known spectra of similar 
molecules, the method is expected to describe related molecules reliably. If this were 
true for all excited states, from the SOS formula of equation 31b, obviously the 
dipole polarizability would be well described as it requires only those two pieces of 
information. However, the low-lying states are only a few of those that contribute 
to the polarizability. Furthermore, as all terms have the same sign, even though 
those neglected might have a comparatively high excitation energy, their sum total is 
significant. That is why there is a large error in a, particularly the azz component, 
compared to the good ab initio results. Notice that INDO/S is competitive with the 
ab initio D Z description, but unlike ab initio methods, semi-empirical results cannot 
be systematically improved. You get what you get! 

Once you expect to use INDO/S for fi_ or 7, you now not only require transition 
moments between ground and excited states but between excited states themselves. 
Such experimental information is very seldom available, much less for the plethora 
of possible excited states, to offer any help with parameterization. 

Table 3 demonstrates the dramatic failure of 7^ for ethylene, where the sign 
is wrong and it is off by 4 to 5 orders of magnitude. The same failure happens 
for p. For the small molecules, I N D O / S and I N D O values of /?J have the wrong 
sign for C O and N H 3 ! (See also (22) for other examples.) Consequently, consid
ering the basis set limitations inherent to semi-empirical methods, and their general 
inability to describe transitions between excited states, only generalizations beyond a 
minimum basis description, and further and more severe parameterization explicitly 
for hyperpolarizabilities, should enable such methods to offer any kind of quanti
tatively reliable results. For design purposes, the hope is to at least reproduce the 
correct trends among similar molecules, and typically for only one dominant axial 
component rather than the whole tensor; a simpler problem. 

The other widely used semi-empirical methods, like those in M O P A C (38,39) 
(namely M N D O , M I N D O , A M I , PM3) , share with I N D O a minimum basis descrip
tion, but parameterization is attempted to be made directly to experimental results 
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2. BARTLETT & SEKINO Reliable Molecular Hyperpolarizabilities 37 

Table 3 Comparison of Ab Initio S C F Hyperpolarizabil it ies as a Funct ion of Basis 
Set with Semi-empirical I N D O and I N D O / S for Ethylene (a.u.) 

COMPONEN1 
SEMI-

EMPIRICAL 
AB INITIO SCF 

EXP COMPONEN1 

INDO INDO/S STO-3G DZ 63I+PD P 0 L + 
EXP 

OLJCX 19.9 31.7 11.45 33.6 36.0 36.4 

ayy 15.9 18.1 0.75 18.0 22.9 24.6 

<*ZZ 2.8 3.7 2.84 8.6 19.4 23.1 

a 12.9 17.8 5.01 18.4 26.1 28.0 28.7 

Tfxxxx -155 -2,092 -263 1,961 3,205 3,300 

lyyyy 95 194 2 111 2,008 2,800 

"Izzzz -6 -13 -23 64 11,303 11,900 

Ixxyy 81 25 -1 43 1,680 1,600 

lyyzz 43 82 9 17 2,344 2,500 

7° 
IXXZZ 

98 304 40 231 3,294 3,100 

-ft 76 -218 -37 -241 6,230 6,500 
..dcSHG 85 -344 -42 -337 9,251 9,900 9,029 

±203 
7 T H O 96 -811 -49 -538 15,836 17,500 
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38 NONLINEAR OPTICAL MATERIALS 

like dissociation energies and other properties, instead of the minimum basis S C F 
values. In particular, unlike INDO/S , such approaches have not been developed to 
apply for excited states as recommended by the SOS interpretation. But even from the 
energy derivative viewpoint, which pertains to I N D O without the " S " as well , there is 
still little reason to believe that such methods have much hope of reliably describing 
qualities as sensitive to nuances of charge distributions as are hyperpolarizabilities. 
Several M O P A C examples that demonstrate failures are presented in ref. (22). 

Electron Correlation 

U p to now, we have only considered H F level methods, ab initio or semi-empirical. 
After ensuring adequate basis sets, there are two particular corrections we need to 
consider: one is the frequency dependence (discussed in the next section) and the 
other electron correlation. Both would be essential, including their mutual coupling, 
to offer the definitive theoretical study for the purely electronic part of molecular 
hyperpolarizabilities. To initially isolate the effects, we w i l l start with correlation 
corrections for static hyperpolarizabilities. 

A s discussed above, H F theory makes the approximation that one electron moves 
in an average field of n-1 other electrons, to enable replacing the two-particle operator 
in the Hamiltonian by the ^2ve^(i)9 one-particle Hamiltonian. This ignores that 

i 
electrons are charged species causing their motions to be instantaneously correlated. 
Clearly, the correlation of electrons bestows an additional degree of stability to the 
molecule, as the electrons are allowed to avoid each other, and this effect significantly 
contributes to the molecule's charge distribution and excited states description. 

In equation 31, we derived formulas for hyperpolarizabilities based upon knowing 
the exact solutions to 7Y 0, which is the Hamiltonian in the absence of the electric field 
perturbation, e0W. Such exact solutions properly include all two-electron effects in 
H0, meaning their eigenvalues and vectors are correlated. This should be contrasted 
with replacing H0 by the H0 = ^2 / ( 0 operator as employed in the H F theory. These 

i 
additional effects of correlation, whether used from the energy derivative viewpoint 
or the SOS, can have a dramatic effect on the observed results. 

We can consider various approaches to electron correlation, but those most fre
quently applied to hyperpolarizabilities are many-body perturbation theory ( M B P T ) 
(4,5,40), known in some programs as M P ) and coupled-cluster (CC) theory 
(7-9,14,41,42). In M B P T , in the absence of the electric field, electron correla
tion corrections could be introduced with the same equations derived in equation 
6-11, where H0 is chosen to be H0 = a n d the correlation perturbation 

V = E77- " I > e / / ( 0 replaces W. Then E&> = ($ 0|V# 0V|$ 0) = (90\V\^). 

This defines MBPT(2 ) . MBPT(2 ) is the simplest correlated method, consisting of the 
initial contribution due to double excitations from occupied to unoccupied orbitals 
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2. BARTLETT & SEKINO Reliable Molecular Hyperpolarizabilities 39 

(i.e. M B P T is usually applied in a given finite order n [MBPT(w)], where n-4 
is the highest frequently used. 

In the absence of an electric field, proper treatment of correlation in hyperpolar
izabilities requires a double perturbation approach (43) where all couplings between 
V and e0W are allowed (44), with e0W applied in a given order to describe the 
particular polarizability, and V is preferably included in all orders. A straightforward 
double perturbation approach is possible, but usually in practice, the requisite cou
pling between V and W is handled in two other ways. The first way is by correlating 
states, and then adding the W perturbation; the route taken in equations 28 to 31: 
This wi l l be the E O M - C C route described in Section 8. Second, we can take the 
viewpoint that we wi l l first solve the H F problem, and then add correlation to that H F 
solution straightforwardly, except that HQ, V , $ 0 and tp^ are all dependent on eQ. 
That is, we evaluate correlation corrections to the electric field perturbed Hamiltonian 
as f£ = fo + £<>W + veJ* as in the C H F method, so 

Ho(e0) = E /*« = E ( / o + £ o W + w 

V = H(e0)-H0(e0) (36) 

E(e0) = £ C H F + E(2)(£0) + EW(e0) + • • • 

EcM^o) = {*o{£o)\H(e0)\*o(eo)) 

and all evaluation of correlation corrections pertain to V(e0)\ such as E^(e0) = 
(<f>0(£0)\V(£0)\j;W(£0)), and, similarly, in higher orders of M B P T (2,3,7,40). Just 
as in H F theory, we have the option of doing this analytically or as a finite field. 

C C theory offers a natural generalization of M B P T that sums categories of 
excitations to infinite order. For example, C C S D means all single and double 
excitations (i.e. # C C S D = exp (T\ 4- T2)$0 where $ 0 is the independent particle 
model and T\ and T2 are the single and double excitation operators, 

T 2 * 0 = E ( 3 7 ) 

a<b 

where occupied orbitals i and j are replaced by unoccupied orbitals a and b, 

T i * 0 = E*?*? <38) 
i 

B y virtue of the exponential expansion, ^ C C S D also contains triple excitations, 
TiT2$o* quadruple excitations, T | $ 0 , etc., ensuring a highly correlated solution. 
C C S D is correct through MBPT(3 ) with many additional higher-order effects (9,28). 
The CCSD(T) model includes, in addition, a non-iterative (28) evaluation of "con
nected" triples, T 3 $ 0 = X) T h i s m o d e l > correct through MBPT(4 ) , 

t<;<* 
a<b<c 

is demonstrably close to the basis set limit or full C I solution—the ultimate re
sult (28). We can simply evaluate the C C results, just as described above for 
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40 NONLINEAR OPTICAL MATERIALS 

Table 4 Comparison of S C F and Correlated Static Hyperpolarizabi l i t ies c 

x|,2)a (10r32 esu/molecule) x[|3)* (IP39 esu/molecule) 

SCF MBPT(2) CCSD(T) SCF MBPT(2) CCSD(T) 

H 2 
- - - 46 50 51 

N 2 | - - - 61 78 85 

C 0 2 I - - 67 98 97 

C2H4 | - - 546 630 563 

CO 9.1 9.7 10.2 85 126 134 

HF -2.3 -3.0 -2.9 27 47 47 

H 2 0 -4.7 -7.6 -7.8 85 150 151 

NH 3 | -6.5 -14.0 -14.8 200 340 353 

HC1 I -1.3 -3.4 -3.3 213 287 295 

H2S I 0.6 -4.5 -4.0 470 620 664 

a /?y = (Pijj + Pjij + with summation convention. xf| = /?||/2> s o 

conversion to a.u. is 4.3195 x 10"33 esu/molecule/a.u. 
b 1\\ = (lHjj + 7»iu +7ii;i)/15 with summation convention, xjj3* = 7||/6, so 

conversion to a.u. is 8.395 x 10"41 esu/molecule/a.u. 
c Basic sets listed in Tables 7 and 8. 
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2. BARTLETT & SEKINO Reliable Molecular Hyperpolarizabilities 41 

M B P T , by letting ^ c c t 0 be eQ dependent, [(V'CC = e x P (T(£0))$o(£o)), along with 
H(e0) = H0 + V{e0) + e0W and Ecc{e0) = (^o)\n(e0)eT^0(e0)]. 

Even better, because of the advantage of analytical evaluation even for the induced 
dipole, we might describe how that is done in C C theory. M B P T follows as a special 
case (18). Because ipcc(£o) = exp (T(£0))$0(£0) is an infinite series, we do not 
evaluate the induced dipole p(e0), as 

fco) = (l>Cc(£o)\W\4>cc(£o))/{i>cc(eo)\l>cc(e0)) (39) 
because the expression would have to be truncated. Instead, we can derive the form 
(18-28), 

jt(e0) = <* 0(£o)|(l + A ( ^ ) ) e - T ( £ % 6 - r W | $ „ ( £ 0 ) ) 

= E*w>. ( 4 0 ) 

pq 

where A is a de-excitation operator, complementary to the excitation operator T and 
jpq is the element of the one-particle "relaxed density" matrix (28). Both A and T 
have to be determined from the C C equations. Subsequent finite-field differentiation 
relative to e0 provides the various polarizabilities like d*ff§°^ = a , flgffig^ = 2!/3> 
etc. A s mentioned, this greatly improves precision and diminishes the number of 
distinct e0 values required. 

Table 4 shows the effect of correlation on static xf\®\0> 0) and x[|3̂ (0; °> °> ° ) -

Note the factor of 2 change for x\\^ of N H 3 , and the order of magnitude and sign 

change for H 2 S . Similarly, changes substantially. This large correlation effect has 
been observed since the initial correlated studies of molecular hyperpolarizabilities 
(2,3), and makes it apparent that "predictive" ab initio methods for hyperpolarizabil
ities must include electron correlation. 

Frequency Dependence 
A l l experiments are frequency dependent, and frequency dependence introduces many 
different processes that become the same in the static limit. 

Instead of the static field perturbation, e0 • W, consider the expansion of the 
induced dipole analogous to that in equation 24, for a time-dependent, oscillatory 
field, e = £0 + 6^ cos ut, 

IH = (9{e,t)\ri\9(eit)) 

= fli(o) + OLij(o, 0)£Qj + QLij(-U] Uj)£0j COS Ut 

+ Pijk(0] O, o)£0j£ok + ^Ajfc(o; W, -V)£uj£u;k (41) 

+ Pijk{-^\^o)eLJje0k cos ut + jftjfc(-2o;;ci;,a;)e t l, J-ew f c cos ut 

+ ••• 
Now, in addition to the static terms we have previously considered, we obtain a 
number of terms that correspond to different incoming and outgoing frequencies. 
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42 NONLINEAR OPTICAL MATERIALS 

Table 5 Representative Non-L inear Optical Processes, with Corresponding Re 
sultant (u><j) and Incident (u>uu)2 • • • ) Frequencies 

Non-Linear Optical Process -to a -UJJ •UJ2 'U3 

First Static Hyperpolarizability 0 0 0 -

Second Harmonic Generation (SHG) -2a; UJ UJ -

Electro-Optics Pockels Effect (EOPE) -UJ 0 UJ -

Optical Rectification (OR) 0 UJ -UJ -
Two-Wave M i x i n g UJ\ UJ2 -
Second Static Hyperpolarizability 0 0 0 0 

Third Harmonic Generation (THG) -3a; UJ UJ UJ 

Intensity-Dependent Refactive Index 
(IDRI) -UJ UJ UJ -UJ 

Optical Kerr Effect (OKE) -UJ\ UJ\ UJ2 -UJ2 

D.C.-Induced Optical Rectification 
(DCOR) 0 0 UJ -UJ 

D.C.-Induced S H G (DC-SHG) -2a; 0 UJ UJ 

Electro-Optic Kerr Effect ( E O K E -UJ UJ 0 0 

Three-Wave M i x i n g UJ{ UJ2 

D.C.-Induced Two-Wave M i x i n g 0 UJ2 
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2. BARTLETT & SEKINO Reliable Molecular Hyperpolarizabilities 43 

For example, Pijk(—2uj]uj,uj) corresponds to second harmonic generation (SHG) 
with incoming frequencies UJ + OJ resulting in an outgoing frequency, 2UJ. Similarly, 
OLij(-u,u) corresponds to the dynamic polarizability, and Pijk(o]u,-UJ) is called 
optical rectification (OR), and Pijk(-uj\ UJ, o) corresponds to the electro optic Pockels 
effect (EOPE). If we allowed the frequencies to be different, P(—UJ\ — UJ2\ ^ 1 , ^ 2 ) 

would correspond to two-wave mixing. Similarly, many such components occur in 
7. A summary of them is shown in Table 5. A l l become the same in the static limit; 
hence, without inclusion of frequency dependence in the quantum mechanical method, 
we cannot distinguish between the different processes. Obviously, we can obtain each 
of these quantities from an appropriate derivative, 

d 2 ^ = Ujk(-0]u,,-u>) (42) 

etc. Just as in the static case, that derivative can be further related to a quasi-energy 
derivatives (45,46) from the Frenkel variational principle (77). 

The first way to augment a static calculation with some measure of frequency 
dependence is to recognize that it may be rigorously shown (47) that for low 
frequencies, 

P(-uja] UJ, UJ) = P(o; o, o) (1 + AUJ\ + BUJ\ + • • •) (43) 

where UJI = W2+UJ2+UJ2 and A and B are unknown constants. Without an independent 
evaluation of A and B, the most we can conclude are the ratios of the various 
dispersion effects. 

For example, neglecting the smaller quartic term, the S H G and E O P E values are 

P(-2w\UJ, UJ) = P(o] o, o) (1 + 6AUJ2) 

P(UJ;UJ,O) = P(O;O,O)(1 + 2AUJ2) 

showing that their ratio, 

P(-UJ;UJ,O) l + 2Aa ; 2 

(44) 

(45) 

Obviously, S H G has a much greater dispersion effect than E O P E . Similarly, we have 
for 7, 

7 ( -a / , ; U J 1 , U J 2 ) U J 3 ) = 7 ( 0 ; 0 , 0 , 0 ) ( l + A'UJ2
L + B'UJ4

L + - • •) (46) 

The components of 7, O K E , IDRI , D C S H G and T H G correspond to the values 
1 plus 2A'UJ2, 4A1UJ2, 6A'UJ2 and 12^4'a;2 , respectively, providing similar ratios. 
Obviously, the degree of dispersion follows the order T H G > D C S H G > IDRI > 
O K E . However, we must at least know the constants to relate the various processes, 
particularly, to static quantities. It appears the only way at present to obtain any 
quantitative relationship is to evaluate the frequency dependent quantum chemical 
results. 
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Table 6 Comparison of Static and D y n a m i c 9 Hartree Fock 
Hyperpolarizabil it ies b 

X M 2 ) (Kf32 esu/molecule) Xj|3^ (HF39 esu/molecule) 

SCF TDHF SCF TDHF 

H 2 - - 46 53.6 

N 2 - - 61 69.0 

C 0 2 - - 67 76.6 

C 2 H 4 - - 546 832 

C O 9.1 10.5 85 102 

H F -2.3 -2.5 27 30 

HC1 -1.3 -1.6 213 270 

H 2 0 -4.7 -5.4 85 100 

N H 3 -6.5 -9.3 200 280 

H 2 S 0.58 0.64 470 690 

a Values by T D H F for S H G and d c S H G at 694.3 nm. 
b Basis sets listed in Tables 7 and 8.  A
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2. BARTLETT & SEKINO Reliable Molecular Hyperpolarizabilities 45 

The first such viable approach is the time-dependent Hartree-Fock (TDHF) 
method. Just as H F theory provides the simplest approach for static polarizabilities, 
T D H F provides the simplest ab initio solution to the time-dependent Schrodinger 
equation H(t)W(t) = i^-tfp- and, thereby, frequency dependent processes. Just as in 
the static case, we can impose a single determinant approximation for \I>(t) « $<>(£)> 
and by applying the time-dependent (Frenkel) variational/principle obtain the T D H F 
(or RPA) equations. The R P A equations date from long ago (48); however, this 
only pertains to excitation energies and a. In 1986, we made the generalization 
to 7, 6, e, etc. and showed that analytically we can evaluate the frequency 
dependent hyperpolarizabilities from the derivatives in equation 36 in any order (11) 
giving ready T D H F access to hyperpolarizabilities. Others have since implemented 
equivalent T D H F approaches for p (45) and for ft and 7 (32). Recently, the 
unrestricted Hartree-Fock (open shell) generalization has been made (49). Figs. 1 and 
2 graphically illustrate the dispersion behavior for various processes, which reflect 
the relative numerical proportions. 

Table 6 shows the effect of dispersion in HF-level calculations of frequency 
dependent polarizabilities to S H G and dcSHG processes. For x[|2^ the average change 

is 20% and x[|3^ is 26%. Obviously, from the static values the other dynamic processes 
can show greater and lesser effects. Just as usual, we can take the derivative or SOS 
viewpoint in T D H F . In the latter case, the excited T D H F states are the usual R P A 
ones (24). 

A t this point, we have a procedure based upon T D H F to evaluate the dispersion, 
and a procedure to add electron correlation to static hyperpolarizabilities. Clearly, 
both are critical in obtaining predictive values. Hence, guided by the fact that equa
tions 37 and 40 are exact in the low-frequency limit, it makes sense to use a percentage 
T D H F dispersion correction (75) to augment static, correlated hyperpolarizabilities; 
namely, 

B y equating the percentage correction to AUJ\ at a particular frequency, a value of A 

could be extracted, as wel l ; or fitting to several different processes, A and B. In the few 
cases where frequency dependent correlated results have been obtained (20,50,57), 
the percentage T D H F dispersion estimate has been well supported. However, it is 
clear that i f the T D H F = R P A result for the excitation energies are poor, then the slope 
of the curve in Figs. 1 and 2 w i l l have to eventually change to be able to approach 
the different asymptotic values of the excitation energy. 

Using this decoupled T D H F dispersion, static correlation procedure, we obtain the 
results shown in Tables 7 and 8. A l l fall within 10% error of the experimental 
result except for F H , whose errors are 28% for x\\^ and 24% for xf3^; for C 2 H 4 , 

7 ^ ; a ; , a ; i , ( i ^ ) = 7 ( 0 ; 0,0,0) x 

j 8 ( ^ ; a ; i ,w2)= j8 ( 0 ; 0 > 0 )x 
^ T D H F ( ^ ; ^ I ^ 2 ) 

£ H F ( 0 ; 0 , 0 ) 

7 H F ( 0 ; 0,0,0) 

(47) 
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Table 7 Theoret ical 3 vs. E x p e r i m e n t a l b Hyperpolarizabil it ies of Molecules 

J2) - I t f S H G 

TDHF MBPT(2) CCSD CCSD(T) EXPERIMENT 

C O 10.5 11.2 11.4 11.7 12.9 ±1.4 
H F -2.5 -3.3 -3.2 -3.4 -4.70 ±0.41 

HC1 -1.6 -4.0 -3.3 -3.8 -4.22 ±0.50 

H 2 0 -5.4 -8.8 -8.2 -9.1 -9.4 ±0.4 

N H 3 -9.3 -20.1 -18.4 -21.2 -20.9 ±0.5 

H 2 S 0.6 -5.0 -3.4 -4.5 -4.3 ±0.9 

a Value corrected for the dispersion effect at 694.3 nm using the formula, 

X||corr(" ~ ° ) x T D H F ( u , = 0) 

The calculations are performed with basis sets [5s3p2d] for C , N , O and F ; [7s5p2d] 
for S; and [3s2pld] for H . Lone-pair functions are added for H F , H 2 0 and N H 3 . For 
HC1, basis is [8s6p3dlf] for CI and [3s2pld] for H . A l l molecules at experimental 
geometries and there is no estimate of vibrational corrections. H 2 S values in lone-pair 
augmented basis are 1.0, -4.4, -2.8 and -3.8, respectively (14). The lone-pair basis 
HC1 values are -1.0, -3.1, -2.6 and -3.0. 

b Value obtained by dc-induced Second Harmonic Generation. 
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Table 8 Theoret ical 3 vs. Experimental 1 * Hyperpolarizabil it ies of Molecules 

J 3 * - I - d c S H G 
* l l - fi 'II 

TDHF MBPT(2) CCSD CCSD(T) EXP 

H 2 54 58.2 59.3 59.3 60.5° 

N 2 69 88.7 90.6 96 86.6 ±1.0 

C 0 2 77 1.11.5 107.9 110 111.9 ±1.3 

C 2 H 4 822 960 820 860 758 ±17 

C O 102 151 149 160 144 ±4 

H F 30 52 49 53 70 ±10 

HC1 270 364 352 374 347 ±15 

H 2 0 100 180 170 180 194 ±10 

N H 3 280 460 430 470 511 ±9 

H 2 S 690 910 870 930 865 ±22 

a Value corrected for the dispersion effect at 694.3 nm using the formula, 

x j n ) M = xj|cL (LJ = 0) x 
TDHF(q j ) 

T D H F ( o ; = 0) 

The calculations are performed with basis sets [5s3p2d] for C , N , O and F ; [7s5p2d] 
for S; and [3s2pld] for H . The lone-pair functions are added for H F , H 2 O and 
N H 3 . For HC1, basis is [8s6p3dlf] for CI and [3s2pld] for H . A l l molecules at 
experimental geometries and there is no estimate of vibrational corrections. The 
lone-pair augmented H 2 S basis values are 731, 970, 930 and 980, respectively. The 
lone-pair basis HC1 values are 274, 369, 356 and 378. 

b Value obtained by dc-induced Second Harmonic Generation. 
c Exact electronic value [D. M . Bishop, J . Pipin and S. M . Cybulski , Phys. Rev. 

A4 3 , 4845 (1991)]. The experimental value of 67.2 includes a significant vibrational 
effect. 
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Water-p 

10.00 -

8.00 I • • • I • • • I . . . I • • • I • • • 1 
0.00 0.02 0.04 0.06 0.08 0.10 

Frequency (a.u.) 

Figure 1. Water-/?: N L O Processes A s a Function of Frequency (a.u.) 

Trans Butadiene y 

0.5 I 1 • 1 • 1 . 1 . 1 
0.00 1.31 2.62 3.94 5.25 6 .56x l0 2 

Frequency(a.u.) 

Figure 2. Trans Butadiene 7: N L O Processes A s a Function of Frequency (a.u.) 
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2. BARTLETT & SEKINO Reliable Molecular Hyperpolarizabilities 49 

whose X|| is too large by 13.4% and N 2 , and C O , whose error is a modest 11%. 
We have discussed F H at length elsewhere (7,14), so we w i l l not repeat that here, 
except to say that we dispute the experimental values, expecting an error in its 
determination. Extensive studies of the convergence of F H ' s hyperpolarizabilities 
to basis set, correlation, frequency dependence and vibrational corrections (14), show 
no convergence to the experimental values. Instead, we propose that the correct value 
for x[|2^ is -3.6 ± 0 .3x l0 " 3 2 esu/molecule and x[3^ is 55 ± 5 x l 0 " 3 9 esu/molecule. For 
the similar HC1 molecule, our CCSD(T) results fall within our goal of a 10% error. 

For C2H4 and N 2 , we can consider more recent or rescaled experimental values 
(22). These are 76.6 ± 17 and 88.8 ± 1, respectively. This does reduce the C2B4 error 
to 12.3% and that for N 2 to 7.9%. Using the experimental results in the tables, the 
average error for CCSD(T) x[ 3 ) is 9.4%. Excluding F H , it becomes 7.3%. Similarly, 

the average error for x\f* is 9.4%, or 5.7% without the F H example, falling within 
our 10% error target objective. The various contributions are shown in Table 9. 
Clearly, correlation and frequency dependence are critical, and C C S D ( T ) is better 
than C C S D . However, it is gratifying that MBPT(2 ) , which is a lot cheaper than 
CCSD(T) , maintains about a 10% error. This level of correlation can be applied to 
much larger molecules (52) than can CCSD(T) . 

Correlated Frequency Dependent Polarizabilities 
Despite the success of the decoupled correlated/TDHF results shown above, the most 
rigorous method would include the full coupling between correlation and dispersion. 
There have only been three attempts of this type for hyperpolarizabilities: a second-
order [MBPT(2)=MP(2)] level method (50); a multi-configurational ( M C S C F ) linear 
response approach (57); and our E O M - C C method (20). The first two are devel
oped from the energy (or quasi-energy) derivative viewpoint, while the latter refers, 
conceptually, to the SOS expressions in equation 31. In other words, E O M - C C pro
vides excited states, {V^}, their excitation energies, ^E0 — E^^j, and generalized 

transition moments, (V '^Vi lV 'o ) , from which the SOS expressions could be formally 
constructed. That form is particularly convenient, since frequency dependence can 
be trivially added to such an SOS expression. For example, for some frequency UJ, 

a . i ( u . u ) _ r v ( ^ K i ^ Q ) ) ( ^ Q ) h i ^ ) ( ^ h i ^ Q ) ) ( ^ Q ) h i ^ ) i ( 4 8 ) 

When UJ — EQ — EJ°^ = ujk, we have a pole, whose residue is the dipole strength 

The basic idea of E O M is very simple (53). Consider the solutions to the 
Schrodinger equation for an excited state, and for the ground state, i\)0, 

Hoi>o = E0if>0 (49a) 
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5 0 NONLINEAR OPTICAL MATERIALS 

Ho^ = E < 0 t y W (49b) 

Now we w i l l choose to write ip^ = fckip0 , where Kk is an operator that creates 
excitations from Vo- If we limit ourselves to single and double excitations, we 
wi l l define an E O M - C C S D approximation. Inserting the excited state expression into 
equation 49b, multiplying equation 49a by 1Zk from the left and subtracting, we obtain 

{HoHk ~ KkHoWo = - E0)Kk1>0 (50a) 

[Ho, Kktyo = VkfckTpo (50b) 

with the commutator between H0 and lZk, [i.e. (H0,7lk)], expression gives the 
"equation-of-motion," from the obvious connection with Heisenberg's form. To 
introduce C C theory, we simply choose for the correlated ground state, i/>0 = ipcc = 
e x p ( T i + T 2 ) $ 0 . A s TZk and Tn are all excitation operators, [JZk,Tn] = 0, and we 
can commute the operators to give, 

recognizing that 

[ e - r f t 0 e r , nk)$0 = [Wo, nk]$0 = uknk$0 ( 5 i ) 

:<i 

the coefficients {rf ,r?*} are to be determined by the matrix equation, 

Urk = rkuk (53) 

Since H0 is not Hermitian, we also have left-side eigenvectors, $ 0 £fc, which unlike 
1lk$o, correspond to de-excitation processes. The Ck and IZi states are biorthog-
onal, ($0|£fc7£/|<I>0) = Skh Their matrix equation is, l f c H 0 = o^l*. The corre
sponding generalized transition moments are obtained from ($ 0 |£e~ r r ie r 7£ /|$ 0 ) = 
($0\CkriKi\Qo). Notice ($ 0 |£ f c f i f t /|$ 0 ) ^ ($ 0|£/f.-ft f c|$ 0) since the operator r{ is 
not Hermitian. The observable quantity, however, is the dipole strength (the prod
uct), not the transition moment itself. 

Now i f we return to equation 48, in terms of E O M - C C solutions, we have 

(54) 
(*o\{l+A)fjKk\90)(90\Ckfi\*, 

LOK — UJ 

Notice, we used the fact that ( $ 0 | £ 0 = ($0|(1 + A ) , which is the same A operator 
introduced in equation 40, and that 1Z0 = 1. 
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2. BARTLETT & SEKINO Reliable Molecular Hyperpolarizabilities 51 

Though informative in this form, we would still have to truncate the SOS. 
To avoid any such truncation, we need to recognize that all E O M - C C states are 
ultimately represented in terms of their underlying single and double excitations, i.e. 
the expression in equation 54. If we collectively represent all as |h), it 
may be shown (79) that equation 48 may be written as 

-avi-u,; u,) = « $ 0 | ( 1 + A)(f , - (fi))T^0) 

+<$ 0|(l + A ) ( r j - ( r i » T i i ) | $ 0 ) ) 

where (f{) is the generalized expectation value like that in equation 40, without 
£ 0 dependence). Analogous to ordinary perturbation theory [equations 28 to 30], 
the first-order perturbed correlated wavefunction is given in terms of the resolvent 
operator matrix R 0 , 

(h|Ti j ) |$ 0 ) = ( h | £ C C ± w - n0\h)-\h\f^0) = Ro(h\fj\*0) (56) 

In practice, instead of inversion, we solve the very large linear equation, 

( h | £ C C ±u> - W 0 |h) (h|Ti j ) |$ 0 ) = (hlivlfto) (57) 

at a given value of UJ for the coefficients. Hence, we can evaluate the SOS 
dynamic polarizability without any truncation (19,20)1 

From the above evaluation of a(—uj\uj)y we can obtain the hyperpolarizabilities 
for the optical Kerr effect (OKE) as follows. /3(-UJ;UJ,O), sometimes also called the 
E O P E , is the second-order hyperpolarizability obtained from a Kerr effect experiment, 
while the E O K E corresponds to I(-UJ]UJ,O,O). Because of the static fields in both 
processes, we are able to obtain /3(-UJ;UJ,O) and J(-UJ;U,O,O) from finite-field 
differentiation of OL(-UJ\UJ). That is, we evaluate ctij(-uj;uj) analytically, using 
equations 56 and 57, where we use the perturbation e0 • r instead of just r. Then 
we obtain a(-uj\uj0,e0), from which 

j8*(-a;; LJ, O) = v ; (58a) 
O£0 

kt \ d2a(uj\uj\e0) 
jk(-oj) UJ, o, o) = v ^ 2 ' (58b) 

Results are shown in Table 10 for NH3 and trans-butadiene as a function of frequency, 
for E O M - C C and T D H F . The usual very large effect of correlation accounts for the 
much larger magnitude for the E O M - C C values, while the comparative dispersion 
values are indicated as the percent dispersion in parentheses. For N H 3 , there is 
about 10% greater dispersion as measured by E O M - C C compared to T D H F at the 
high frequencies (0.1 a.u.), but not at the low frequency (0.0656 a.u.) value used 
in the d c S H G experiments we previously described. For butadiene, the percentage 
dispersion is close, but the slightly smaller value helps to reduce our calculated values 

 A
ug

us
t 1

5,
 2

01
2 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e:
 M

ay
 5

, 1
99

6 
| d

oi
: 1

0.
10

21
/b

k-
19

96
-0

62
8.

ch
00

2

In Nonlinear Optical Materials; Karna, S., et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1996. 



52 NONLINEAR OPTICAL MATERIALS 

Table 9 Percent E r r o r of Hyperpolarizabil it ies at Various Levels Compared to 
Experiment 

v ( 2 ) Xn v ( 3 ) 

H F (w=0) 57 46 
T D H F (w) 50 31 
M B P T ( 2 ) 12 (9)* 9 (7 )* 

C C S D 19 (16)* 8(6)* 

C C S D ( T ) 9 (6)* 9 (7 )* 

•Without F H example. 

Table 10 K e r r Effect Tensors for N H 3 and C 4 H 6 Calculated at Different 
Frequencies (in au) a 

Frequency 
(au/nm) 0 0.043/1060 0.0656/694.3 0.1/455.6 

NH3
a (POL+) 

-35 .9 
-14.7 

- -41.5 (15 .7%) 
-16 .6 (12 .7%) 

-51 .5 (43 .5%) 
-19.7 (33 .8%) 

jk c 4136 .63 
2404 .99 

-
4703 .00 (13.7%) 
2646 .36 (10.0%) 

5711 .56 
(38 .1%) 
3039 .95 
(26.4%) 

C4H6
d (631G+PD) 

7xxrjc(-u>;u;,0,0) 
4 1 2 0 0 
23514 

4 4 0 0 0 (6.9%) 
25571 (8.7%) 

4 8 1 0 0 (16.8%) 
28733 (22.2%) 

-

7* 
2 0 7 0 0 
14812 

2 1 9 0 0 (5.7%) 
15794 (6.6%) 

2 3 7 0 0 (14.1%) 
17277 (16 .7%) 

-

a The numbers in upper and lower rows are evaluated by E O M - C C and T D H F , 
respectivelyJC is theCj molecular axis. 

b Pk = &Wi*i-PK*) 
C 7 = To(^7tj»'i - lHjj) 
d The numbers in upper and lower rows are evaluated by E O M - C C and T D H F , 

respectively. The* component corresponds to the longitudinal molecular axis and the 
z component is perpendicular to the molecular plane. 
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2. BARTLETT & SEKINO Reliable Molecular Hyperpolarizabilities 53 

to be in somewhat better agreement with experiment. Unlike most other molecules 
we have studied, T D H F results for ethylene and butadiene are fortuitously close to 
experiment, while correlation hurts the agreement. The origin of this is not yet clear, 
but the fact that the correlated dispersion is smaller than that for T D H F could be 
ascribed to the T D H F = R P A excitation energies being too low, causing the curve in 
Fig . 2 to rise too quickly to approach the wrong asymptotic values. For multi-bonded 
molecules like ethylene and butadiene, the restricted H F result is not triplet stable, 
although this only prohibits R P A from correctly describing triplet excited states, the 
R P A singlet excitations tend to be lower than experiment; contrary to that for most 
systems. This may partially account for T D H F giving higher percentage dispersion 
corrections. 

We have not discussed vibrational contributions to predictive studies of hyper
polarizabilities, but these can sometimes be important (27). In equation 48, e.g., we 
could have contributions from all vibronic states indexed by k, instead of just the 
electronic ones. For an optical frequency, UJ, which is much greater than a vibra
tional energy, such slight changes in E^ would have negligible numerical value. 
However, for N L O processes that involve static fields, the SOS formulas w i l l have 
some denominators without an additional large UJ value, causing the vibronic changes 
in 4 o ) to be more significant to the final result. The vibrational energy levels can be 
substantially perturbed by such an electric field as we have shown numerically for F H 
and H 2 (10). Because of the static fields in O K E , this is an example where attention 
needs to be paid to such effects. Assisted by a determination of /^and j% (54), we 
can extract from our calculations predictions for f3h = fif and 7* = 7jf+7j! that 
could be compared with experiment. For N H 3 , MBPT(2 ) values for and 7J! are 
3.8 and 135 a.u. at 0.07 a.u. This suggests that f3k « - 3 6 , 7* « 4800 at a;=0.0656. 
For butadiene, there is a larger (SCF), 7^=1395 to 1762 a.u., [55] giving 7* «25000. 

Future Extensions 

There are a couple of fairly obvious extensions that should be made in future 
theoretical work for N L O material design. In the short term, we obviously need 
to generalize analytical frequency dependent E O M - C C for all the components of 
/? and 7. Also , considering the good accuracy of MBPT(2 ) level correlation, purely 
analytical, frequency dependent versions for ft and 7 are strongly recommended, 
that should remove the current constraints (50). Other routes to partitioned E O M -
C C approximations that are operationally second-order, can be envisioned (56) and 
should be pursued. 

Obviously, it would also be nice to be able to treat hyperpolarizabilities for 
molecules in solution. Several such solvation methods, ranging from continuous 
reaction fields to more detailed solvation models are becoming available (57). These 
should help in sorting out the large discrepancies among results from solvation 
experiments (EFISH) (58). 
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In the longer term, we need theoretical methods comparable to that presented 
for small molecules that are applicable to extended, polymeric systems (59). The 
first such approaches should employ periodicity, with future extensions directed at 
the inclusion of impurity effects. 

Today, it is not possible to use analytical gradient techniques with correlation to 
move atoms around in polymers, as it is for molecules. Nor, are there the quality 
ab initio methods for band gaps, and excited states, and polarizabilities as there are 
for molecules. Clearly, developing the tools for rational N L O polymer design should 
have a high priority. 

A s current high-level ab initio methods w i l l eventually encounter limitations, 
even for periodic systems, simplified techniques should be pursued, simultaneously. 
The questionable reliability of semi-empirical M O theory suggests that a better "semi-
empirical" approach is likely to be offered by modern density functional theory (DFT). 
Although D F T has a rigorous base, in application it is semi-empirical. Such methods 
are well known for extended systems, and have decided computational advantages, 
compared to ab initio correlated methods, but they have not yet been demonstrated 
to provide comparable results to those presented in this chapter. In fact, one paper 
says that Kohn-Sham D F T does not work for molecular hyperpolarizabilities (60). We 
have considered other D F T variants, however, and find that competitive results can be 
obtained (61). The significant computational advantages of D F T make this a profitable 
area for study. Frequency dependent approaches need to be developed, however. 
Also , the conventional wisdom is that D F T does not admit treatments for excited 
states. Exploiting the equivalent derivative viewpoint should avoid any such formal 
restrictions for polarizabilities. Also , the ultimate limitation of applied D F T methods, 
like semi-empirical M O methods, is that there is no way to systematically converge 
to the exact result. New methods that combine elements of ab initio correlated theory 
with D F T methods wi l l be forthcoming and might alleviate this failing. 
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Chapter 3 

Calculation of Nonlinear Optical Properties 
of Conjugated Polymers 

Bernard Kirtman 

Department of Chemistry, University of California, 
Santa Barbara, C A 93106 

We present a comprehensive ab initio finite oligomer method for 
calculating the nonlinear optical properties of conjugated polymers. It is 
shown that extrapolation to the infinite polymer limit can be accurately 
carried out with the (large) effect of electron correlation taken into 
account. Other important aspects treated include frequency-dependence, 
vibrational distortion and environmental interactions. Some brief 
speculation about future directions is given. 

There has been a recent explosion of interest (1-4) in nonlinear optical (NLO) materials 
because of their potential utilization in optical communication systems. Theoretical 
calculations that reliably determine the origin and magnitude of dynamic 
hyperpolarizabilities, which are the properties that govern NLO processes, can play an 
important role in designing these materials. From a practical standpoint polymers are 
amongst the most promising candidates for new applications. This paper discusses the 
progress that we have made in the ab initio computation of polymer 
hyperpolarizabilities, with an emphasis on conjugated systems. Although the focus 
here will be on ab initio treatments, since they are more reliable, we note that semi-
empiricism can also be useful especially in circumstances where ab initio calculations 
are otherwise not feasible. 

Our general procedure for determining polymer properties is straightforward. 
Calculations are carried out on finite oligomers of increasing size and, then, 
extrapolated (5) to the infinite polymer limit. This finite oligomer method works very 
well when there are no fields present. It also works very well for NLO properties, as 
we will see, but the extrapolation to get rid of end effects must be done with care since 
the convergence with increasing chain length is slow (6-10). 

An alternative to the finite oligomer method is a band structure or crystal orbital 
(CO) approach (11-16) which, in principle, would circumvent the extrapolation 
problem. However, the interaction potential due to the electric field destroys the 
translational symmetry of a periodic polymer and introduces new complications, in 
addition to the usual questions concerning convergence of lattice sums and sampling of 
points in k-space. Although this remains an active field, thus far calculations have been 
limited to linear polarizabilities at the Hartree-Fock level of theory. One should bear in 
mind the possibility that hybrid formulations could capture the advantageous features of 

0097-6156/96/0628-0058$15.25/0 
© 1996 American Chemical Society 
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3. KIRTMAN Calculation of NLO Properties of Conjugated Polymers 59 

both the crystal orbital and finite oligomer methods. Such a formulation has been 
developed (77) for vibrational properties of polymers and has also been suggested (18) 
for hyperpolarizabilities in conjunction with the local space approximation. 

A challenging feature of N L O properties in real materials is the fact that there are 
so many important aspects. It is well-known, of course, that the frequency-dependence 
of these properties (as well as the background optical absorption associated with the 
linear polarizability) is critical for the operation of optical devices. This particular facet 
wi l l be considered after first discussing extrapolation of the Hartree-Fock results to the 
infinite chain limit and the effect of electron correlation. Such aspects as electron 
correlation, vibrational distortion and environmental interactions, as well as impurities 
and disorder can be of major significance. Electron correlation can change the 
hyperpolarizability by as much as an order of magnitude, through both indirect 
(geometry) and direct effects. Although it might seem that the size convergency 
problem would pose an insurmountable barrier to treating electron correlation in the 
finite oligomer method that turns out not to be the case (79). 

The vibrational distortion contribution to the hyperpolarizability arises because 
the interaction with an electric field depends upon the instantaneous nuclear 
configuration. As a result there is a field-dependent shift in the equilibrium geometry 
and in the vibrational force field leading to a so-called vibrational hyperpolarizability. 
Preliminary investigations on small oligomers have shown (9), unexpectedly, that the 
vibrational term can be larger than its electronic counterpart in some N L O processes. 
Our first efforts to follow-up on these results, with formal theory and computations, 
w i l l be described after the section on frequency-dependence. It wi l l be seen that certain 
collective modes can contribute significantly to the vibrational hyperpolarizability 
despite being optically inactive in the infinite chain limit. 

The influence of environment on N L O properties is an aspect that has barely 
been touched. In the case of polyacetylene, the geometrical arrangement of the polymer 
chains and the interchain distances in the solid state (stretched fiber) are known 
experimentally. Using this information supermolecule calculations on the effect of 
interchain interactions have been carried out. From the results reported here we wi l l see 
that the environmental effect on the hyperpolarizability is quite large and contrary to 
what is predicted by semiempirical studies (20). 

The last section is devoted to a discussion of future directions including 
extensions to polymers containing larger monomelic units and to the investigation of 
other factors, not yet considered, that may strongly influence N L O properties. We also 
speculate about how insights gained from our calculations, and others of a similar 
nature, might lead to better N L O materials. 

We begin, in the next section, with the first step along the pathway towards a 
comprehensive treatment for conjugated polymers; namely, calculation of the static 
longitudinal hyperpolarizability at the coupled perturbed Hartree-Fock (CPHF) level. 
In this context we deal with the critical problem of extrapolating to the infinite chain 
limit. 

Stat ic L o n g i t u d i n a l H y p e r p o l a r i z a b i l i t y at the C P H F L e v e l / E x t r a p o l a t i o n 
to the Infinite C h a i n L i m i t 

The value of the static hyperpolarizability determined at the C P H F level of 
approximation is our fundamental reference quantity. Besides being the starting point 
for further calculations the behavior of this quantity with increasing chain length 
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60 NONLINEAR OPTICAL MATERIALS 

provides a rough template for the corresponding evolution of changes in the 
hyperpolarizability due to frequency dispersion, electron correlation, etc. This fact wi l l 
be used in later sections to facilitate extrapolation of these effects to the infinite chain 
limit. 

Very recently (10), C P H F static hyperpolarizabilities were reported for the 
linear polyenes C 4 H 6 through C44H46. In addition, it was shown that these results 
could be extrapolated to yield a value for the infinite polyacetylene (PA) polymer which 
is comparable in accuracy to that ordinarily achieved for small molecules. Although P A 
was used in this instance, the method for extrapolating is generally applicable. 

From the above treatment, as well as previous calculations (6-9), some useful 
guiding rules and practices have emerged. One guiding rule is that the methods 
employed need to meet the desired accuracy for the large oligomers but not necessarily 
the smaller ones. After al l , only the asymptotic limit is of interest. In practice this 
means that a split valence 6-31G basis w i l l usually suffice (6,9). It also means that we 
can employ the geometry of the infinite polymer, obtained either from a C O calculation 
or extrapolation of small oligomer results, without reoptimizing for the individual 
oligomers. Finally, the calculations can be restricted to the longitudinal component 
which wi l l dominate for the infinite chain. 

A second guiding rule is that the ratio of similar calculations wi l l usually 
converge much faster with chain length than either one separately. Thus, the effect of a 
particular basis set augmentation on the hyperpolarizability can be checked by 
considering only relatively small oligomers. In the next section it is shown that 
different correlation treatments can be tested in a like manner. More importantly, we 
wi l l use this feature as the basis for determining the (static) correlated 
hyperpolarizability of the infinite chain which, in some instances, can be found even 
without an extrapolation simply by taking the ratio to the C P H F value. A similar 
approach also leads to improved convergence for frequency dispersion in the non-
resonant regime. 

As far as extrapolation is concerned, the guiding rule we have formulated is that 
the result must be stable with respect to variations in the parameters characterizing the 
treatment of the data set. Ordinarily, the infinite chain value is found by a least squares 
fit to a postulated functional form. The shorter oligomers in the data set have only 
limited bearing on the behavior of this function in the asymptotic region. In fact, 
including these oligomers can lead to a poorer fit for the longer chains. So the question 
is - which short chains, i f any, should be eliminated? In practice, an initial calculation 
is done using the minimum number of long chains necessary to define the fitting 
function. Then the shorter oligomers are added one at a time. Typically, there wi l l be 
large oscillations, at first, in the extrapolated value because of the few degrees of 
freedom available. As the number of oligomers included continues to increase the 
oscillations diminish while the fit remains good. This is the stable region that we seek. 
Eventually three things happen: (1) the overall quality of the fit deteriorates; (2) there is 
a steady upward or downward trend in the calculated infinite chain limit; and (3) the 
deviation for the longest chain, in particular, increases. This last item (i.e. (3)) is the 
quality of fit criterion that is used to mark the emergence from the stable region and, at 
that point, we cease consideration of the remaining oligomers. 

The behavior just described is illustrated in Table I. Here, for the linear 
polyenes C2^H 2/v+2» we have fit the static C P H F longitudinal hyperpolarizability per 
repeat unit to a polynomial of order k in l/N. Thus, the constant term in the polynomial 
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corresponds to the infinite chain limit. The integer p is the number of oligomers added 
beyond the minimum necessary to determine the fitting parameters, while N m a x gives 
the chain length of the largest oligomer considered. The case N m a x = 2 2 , k=2 is typical. 
Note that the extrapolated value oscillates for p=0-4; is stable for p=5-7; and, then, 
gradually diminishes as the fitting error (not shown) for C ^ H ^ increases. 

Although it is always desirable to make use of the longest chain for which 
calculations have been done, we are also interested in the effect of removing this 
oligomer. The change in the calculated infinite chain limit provides a measure of the 
uncertainty in its value (see below). 

We have yet to discuss the fitting function or the precise definition of the 
quantity to be fit. Two different prescriptions have been employed to convert calculated 
hyperpolarizabilities to the hyperpolarizability per repeat unit, which is the quantity that 
should saturate as the chain length is increased. One of these is simply to divide the 
total value by the number of repeat units; the other is to take the difference between 
successively larger oligomers. In general, the latter is preferable because end effects 
are minimized and, therefore, convergence is faster. Sometimes, however, the 
differences between successive oligomers may behave erratically for long chains due to 
the presence of more than one series of oligomers (for example, odd N vs. even N in 
PA) or the inaccuracy of numerical differentiation in finite field treatments. In that 
event one must utilize the alternative procedure, or analytical differentiation if numerical 
inaccuracy is the problem. Finally, some workers (6) have found it convenient to 
replace the hyperpolarizability per repeat unit by its logarithm. This wil l make little 
difference i f the stability (plus quality of fit) criteria are satisfied and the fitting function 
has sufficient flexibility as described below. 

Several different forms have been proposed to describe the asymptotic behavior 
in the long chain limit. They include: (1) the simple power series in 1/N previously 
mentioned, (2) Pade approximants (27,22), and (3) the exponential function (75) 
A-Bexp(-cN). None of these are derived from first principles. A perturbation 
treatment (23) of the infinite chain shows that the leading correction to the Hartree-Fock 
energy per unit cell is proportional to 1/N, which is consistent with (1) and (2). Our 
choice of (1) is based on the principle of Occam's razor; however, as long as terms can 
be added in a systematic manner, stability criteria can be applied to any form that 
satisfies the boundary conditions. For a power series in 1/N stability is required with 
respect to changing the order of the series. 

The methodology described in this section has been applied to the C P H F static 
hyperpolarizability of polyacetylene using the linear polyene oligomers through 
C44H46. From the subset of extrapolations for k < 5 and 20 < N m a x ^ 22, that meet the 
stability and quality of fit criteria, we extract an infinite chain value which falls in the 
range (691 ± 39) x 10 4 a.u. There is some arbitrariness in determining the region of 
stability, but this result is not particularly sensitive to the precise numerics. The 
uncertainty of 5.6% reported here is comparable to that normally achieved for small 
molecules even though the hyperpolarizability per repeat unit for the largest oligomer 
considered is only 43% of the infinite polymer value. 

Effect of E l e c t r o n C o r r e l a t i o n on the Static H y p e r p o l a r i z a b i l i t y 

As observed earlier, electron correlation can have a profound effect on N L O properties. 
However, to calculate this effect directly for long chain oligomers, such as C44H46, is a 
daunting task even at the crudest level of approximation. Fortunately, indirect ratio 
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3. KIRTMAN Calculation of NLO Properties of Conjugated Polymers 63 

methods can be used to circumvent this problem. One of the first issues that needs to 
be examined is the level of the correlation treatment. Assuming for the moment that a 
6-31G basis is sufficient, we have carried out a set of correlation calculations for small 
linear polyenes using Moller-Plesset second order (MP2) and fourth order (MP4) 
perturbation theory. The results obtained at the restricted Hartree-Fock, i.e. R H F / 6 -
31G, geometry are shown in Table II. It appears that the perturbation treatment 
converges rapidly. The full M P 4 values including single (S), double (D), triple (T), and 
quadruple (Q) excitations are less than M P 2 , but by a relatively small amount in each 
case. The breakdown of contributions according to excitation level is arbitrary; using 
the results reported in the table one can say that the small difference between M P 2 and 
MP4(SDTQ) is due to the effect of single excitations and quadruples (to a lesser extent) 
being partially canceled by doubles and triples (in the larger polyenes). A coupled 
cluster doubles calculation, augmented by fourth order singles and triples, was done 
just for butadiene and it gives a result close to (difference =1 .8 a.u.) MP4(SDTQ) . 
Furthermore, the convergence of the MP4(SDTQ)/MP2 ratio with increasing chain 
length is also rapid. The infinite polymer limit of this ratio is 0.92, as obtained from an 
extrapolation based on our usual procedures. We conclude that the correlation effect can 
be accurately determined from an M P 2 calculation multiplied by the scale factor of 
0.92. This numerical value is strictly valid only at the RHF/6 -31G geometry but it is 
insensitive to geometry variations. Of course, the above treatment is specific to 
polyacetylene. It remains to be seen whether or not an analogous procedure wi l l work 
for other polymers. 

A second point that must be considered is the adequacy of the 6-31G basis 
when correlation is included. For this purpose the effect of several different basis set 
augmentations on the M P 2 longitudinal hyperpolarizability (yL) has been examined, 
again using the linear polyenes as an example. We report the ratio with respect to the 6-
31G basis set calculation in Table III (all results were determined at the R H F / 6 - 3 1 G 
geometry). The 6-31G+PD basis contains diffuse P and D functions on carbon with 
exponents optimized for the C P H F hyperpolarizability (6) in butadiene. This same 
basis has been employed for correlated hyperpolarizabilities in butadiene (24) and for 
C P H F calculations in longer polyenes (6). As expected, the addition of diffuse P and 
D functions causes yL to increase but this effect diminishes rapidly with chain length. 
For comparison, the analogous ratios for the R H F y L are included in parentheses in the 
table. The R H F values were extrapolated (6) using the linear polyenes through C 1 6 H 1 8 

to give an infinite chain ratio of 0.93 (separate extrapolations were done for the two 
basis sets and, then, the ratio was taken). For the M P 2 calculations it appears that the 
limit wi l l be somewhat closer to unity. 

Longitudinal hyperpolarizabilities obtained using the standard 6-31G* and 6-
31G** bases are also given in Table III. These bases contain the tight polarization 
functions on carbon (6-31G*) and on hydrogen as well (6-31G**) that are normally 
utilized in field-free calculations. Consequently, the ratio is less than unity but the effect 
again diminishes as the chain is lengthened. The additional polarization functions on 
hydrogen (cf. 6-31G** with 6-31G*) were found to give only a small increase in the 
ratio for butadiene and hexatriene so that, for the infinite polymer, there wi l l be close 
agreement between the 6-31G and 6-31G** basis sets. 

Although future studies of more extended bases (6-31G + P D and larger) could 
lead to some improvement, we conclude from the above that the 6-31G basis wi l l give 
M P 2 results that are accurate to better than 10%. Our MP2/6-31G values of yL per 
repeat unit are reported in Table IV for the linear polyenes at two different geometries. 
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NONLINEAR OPTICAL MATERIALS 

O 6 -

Figure 1 TDHF/6 -31G longitudinal hyperpolarizabilities for C 3 0 H 3 2 in the 
region of the spectrum up to the first absorption. dc -K is the dc-Kerr effect; 
S H G is second harmonic generation; T H G is third harmonic generation; and 
IDRI is intensity dependent refractive index. 
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3. KIRTMAN Calculation of NLO Properties of Conjugated Polymers 67 

Of the latter, one is the "frozen" RHF/6 -31G geometry optimized for the individual 
polyene while the other is the MP2/6-31G geometry (25) optimized for the infinite 
polymer (a C - H bond distance of 1.0725 A and a C - C - H bond angle of 124° was 
adopted for the terminal hydrogens; other reasonable choices might have a small effect 
on the convergence with chain length). Included in the table is the ratio taken with 
respect to an R H F / 6 - 3 1 G calculation (at the RHF/6 -31G geometry). This ratio is seen 
to converge rapidly as the chain is lengthened. In fact, beyond N=4 it is constant 
within the uncertainty of the finite field method of determination. 

Electron correlation at the M P 2 level clearly causes a substantial increase in y L 

even at the "frozen" R H F geometry. A n overall increase by a factor of 2.84 (based on 
the largest oligomer treated) occurs when the change in geometry, which decreases the 
bond length alternation, is also taken into account. (A study comparing correlation 
effects in polyacetylene with polyyne and polypyrrole has now been undertaken by 
Toto, J . L . ; Toto, T.T. ; deMelo, C P . , Federal University of Pemambuco, personal 
communication, 1995.) Using the scaling constant of 0.92 to convert to the fully 
correlated result, along with the R H F static y L given previously, we obtain 181 x 10 5 

a.u. as our best estimate of the static y Lper repeat unit for the infinite polymer. 

F r e q u e n c y - d e p e n d e n c e 

So far, only static hyperpolarizabilities have been considered. For practical applications 
it is the nonlinear response to temporally oscillating laser fields that is of interest. In 
order to calculate this response, which is governed by the dynamic 
hyperpolarizabilities, a suitable starting point is the time-dependent analogue of the 
static C P H F treatment, often referred to simply as the time-dependent Hartree-Fock 
(TDHF) approximation (26). 

Building upon the work of Kama, et al. (27) for small oligomers we have 
undertaken TDHF/6 -31G calculations on the linear polyenes thru C 3 0 H 3 2 . The results 
for C 3 0 H 3 2 , in the region of the spectrum up to the first absorption, are shown in 
Figure 1. Characteristically, the dispersion is greatest for third harmonic generation 
(THG) and successively decreases in the order: 

T H G > dc -SHG > IDRI (or D F W M ) > dc-Kerr (1) 

Here d c - S H G is field induced second harmonic generation; IDRI is the intensity-
dependent refractive index, also known as degenerate four wave mixing ( D F W M ) ; and 
dc-Kerr is the field-induced Kerr effect. In the usual notation for the dynamic 
hyperpolarizabilities, i.e. yL(-coa;coi,0)2,0)3) with 0 ) a = 0)1 + 0)2 + 0)3, these four 
processes correspond to the cases: 0)1 = CO2 = 0)3 = 0) (THG) ; C0i = 0)2 = 0), 0)3 = 0 (dc
S H G ) ; 0)1=0)2 = 0), 0)3 = -co (IDRI); and 0)1 = 0), 0)2 = 0)3 = 0 (dc-Kerr). It has been 
shown (28) that, in the low frequency limit, the ratio of the dynamic to the static 
hyperpolarizability may be written: 

yL(-coa;coi,o)2,C03)/yL(0;0,0,0) = 1 + A o ^ 2 (2) 

where G ^ 2 = co a
2 + a>\2 + (O22 + CO32 and A is a constant independent of the process. 

This relationship determines the order given in equation 1. We find that it is satisfied 
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NONLINEAR OPTICAL MATERIALS 

•ftcu (ev) 

Figure 2 T D H F / 6 - 3 1 G dispersion curves for P A in the low frequency region 
obtained by extrapolation of calculations on the finite oligomers through 
C 3 0 H 3 2 . d c -K is the dc-Kerr effect; S H G is second harmonic generation; T H G 
is third harmonic generation; and IDRI is intensity dependent refractive index. 
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3. KIRTMAN Calculation of NLO Properties of Conjugated Polymers 69 

(all processes) to within an accuracy of 2xl0" 3 in C30H32 for frequencies up to ftco ~ 
0.3 eV. For higher frequencies the dc-Kerr and d c - S H G processes should satisfy 
equation 2 after adding a B o ^ 4 term (28) to the rhs, where B is a constant. With the 
additional term these two processes are obtained to an accuracy of 2xl0" 3 in C 3 0 H 3 2 for 

all frequencies less than h(0 -0.8 eV. 

Dynamic R H F hyperpolarizabilities converge slowly with increasing chain 
length like their static counterpart. Can this situation be improved by taking the ratio of 
the two in analogy with our successful treatment of electron correlation? Some typical 
results are displayed in Table V for dc -SHG at two different frequencies corresponding 
to a dispersion of 10% (ftco = 0.4 eV) and 52% (h® = 0.8 eV) in C30H32. In both 
cases the ratio approaches the asymptotic limit much more rapidly than the 
hyperpolarizability itself. Using the methods described earlier to extrapolate this ratio 
we have constructed the dispersion curves for the infinite polymer shown in Figure 2. 

Of course, we are interested in the entire spectrum rather than just the low 
frequency region. However, the self-consistent-field iterations in the T D H F procedure 
do not converge at frequencies near, and beyond, the first absorption. This difficulty 
can be overcome by the introduction of radiative damping, as in the uncoupled Hartree-
Fock sum over states treatment of Shuai and Bredas (29). The computer program 
modifications to do so are currently being implemented (in collaboration with S. P . 
Kama). In the simplest version the linewidth is taken to be proportional to the orbital 
excitation energy and the proportionality constant is varied to yield stable results. 
Alternatively, one can use the random phase approximation, although the computations 
are considerably more extensive. 

Electron correlation wi l l critically affect dynamic hyperpolarizabilities just as it 
does the corresponding static property. Ordinary finite field or analytical differentiation 
techniques cannot be utilized to compute this effect. Several appropriate methods have 
been developed (30-33), although they are often tedious to apply. As a shortcut, a 
hybrid approach (34) has been proposed in which it is assumed that the percentage 
correction due to dispersion at the R H F level is also valid for a correlated treatment. If 
that is the case, then it is sufficient to know the T D H F dispersion plus the static value 
of the correlated hyperpolarizability. This approximation has been tested recently (35) 
for the optical Kerr effect in frans-butadiene using an equations-of-motion coupled-
cluster singles and doubles (EOM-CCSD) frequency-dependent correlation treatment 
(33). It was found that the T D H F calculation overestimates dispersion for y L by as 
much as 32% at 694.3 nm. Computations are underway to determine whether this 
discrepancy grows with increasing chain length as speculated (35) and, i f so, how 
rapidly. We also plan to examine other N L O processes, particularly dc -SHG. 

V i b r a t i o n a l H y p e r p o l a r i z a b i l i t i e s 

We have noted previously that vibrational hyperpolarizabilities can be comparable to, or 
larger than, their electronic counterparts depending upon the system and the N L O 
property. Two relevant examples are the longitudinal dc-Kerr effect and IDRI in 
trisilane (9). At the double harmonic level of approximation (see below) the ratio of the 
vibrational to the electronic term has been estimated to be 0.50 and 3.12 respectively. 
The corresponding ratios in frans-butadiene, based on a more accurate treatment, are 
0.192 and 0.433. 
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A perturbation method for calculating the dynamic (or static) vibrational 
hyperpolarizabilities of a general polyatomic molecule has recently been formulated by 
Bishop and Kirtman (36-38). Their procedure is based on the double harmonic initial 
approximation and accounts for terms of the following order: (0,0), (1,0), (2,0), (0,1) 
and (1,1), where the first index refers to electrical anharmonicity, and the second index 
to mechanical anharmonicity. Contributions due to third derivatives of the electrical 
properties with respect to normal coordinates are omitted from the (2,0) term. In 
principle, these could be included along with the (0,2) term, but the computation of the 
parameters involved represents a formidable obstacle. 

A simple procedure (39) for approximating the perturbation expressions has 
also been developed. It is based on the evaluation of electrical properties in the 
presence of a static field with and without reoptimizing the geometry. For example, by 
fitting the change in the linear polarizability (ocap) due to the geometry relaxation one 

obtains the dc-Kerr hyperpolarizability / ^ ( - t o ^ ^ O ) ^ ^ from the coefficient of the 

term quadratic in the field (i.e., the term proportioned to F^g ) . Here the superscript 
v(r) denotes the relaxation part of the total vibrational contribution which, it turns out 
(see below), is due to the lowest order perturbation corrections of each type that appear 
in the complete treatment (Bishop, D . M . ; Hasan, M . ; Kirtman, B . , J. Chem. Phys., in 
press). We use co—> °° to indicate that the optical frequency is allowed to approach 
infinity. The terms kept in this "infinite (optical) frequency" limit are similar to those 
designated as "enhanced" by Elliott and Ward (40) and are expected to be dominant (a 
set of confirmatory tests has now been carried out for several small molecules by 
Bishop, D . M . ; Dalskov, E . K . , Ottawa University, personal communication, 1995). 
For the above example our treatment yields the (1,0) + (0,1) perturbation contributions 
to the vibrational dc-Kerr effect in the infinite frequency approximation. 

The linear term in the static field expansion of the first hyperpolarizability (P ap y) 

gives Y^^-lco^co^co^O)^^, which yields the vibrational dc -SHG to the same order as 
above (although, in this case the (1,0) and (0,1) contributions vanish). Finally - again 
to the order (1,0) + (0,1) - the vibrational IDRI is a linear combination of the dc-Kerr 
and dc -SHG vibrational hyperpolarizabilities plus the relaxation component of the static 
vibrational hyperpolarizability. The latter is evaluated from the cubic term in the static 
field expansion of the dipole moment induced by vibrational relaxation. 

The anharmonic frequency-dependent perturbation theory expressions for the 
vibrational hyperpolarizability have, thus far, been evaluated only for small molecules 
(37, 41). However, there are double harmonic calculations suggesting that vibrational 
hyperpolarizabilities may be quite significant in certain polymers. For instance, in 
rrans-polysilane (41) the static linear vibrational polarizability, obtained by extrapolating 
double harmonic results for the oligomers S i 2 N H 4 N + 2 with N=l ,2 , . . .8 , is 50% of its 
electronic counterpart. In small polysilane oligomers (9) the corresponding 
hyperpolarizability ratio for IDRI (532nm) is much larger (by a factor of 4-6), leading 
one to speculate that the same may be true for the infinite polymer. 

A second example is provided by the double harmonic calculations of Zerbi and 
co-workers (43) on oligomers of poly acetylene through Q2H14. Although these chain 
lengths are not sufficient to yield a satisfactory estimate for the infinite polymer, the 
particular contribution to the static vibrational hyperpolarizability that they evaluate is 
comparable to the total electronic term. Furthermore, it can be shown (44) that in the 
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"infinite (optical) frequency" approximation this same contribution, after multiplication 
by 2/3, yields the vibrational IDRI. It also enters into the vibrational dc-Kerr effect with 
a multiplicative factor of 1/3 (although, in this case, there is another term). 

A detailed analysis (44,45) of the static linear vibrational polarizability, a v (0 ) , 
of polyacetylene indicates that low frequency, collective acoustic modes may play an 
important role in the vibrational /iy/?erpolarizability. For polyacetylene, it turns out that 
ocv(0) is dominated in zeroth-order by a term that arises from a transverse acoustic mode 
known as the T A M . As the finite oligomer chain is lengthened, both the infrared 
intensity and vibrational frequency associated with this mode approach zero but the 
ratio, which determines the contribution to ocv(0), remains finite. The symmetry of the 
T A M is such that it wi l l also contribute to the zeroth-order vibrational d c - S H G and dc-
Kerr hyperpolarizabilities. In fact, at this level of approximation, no other symmetries 
are involved in the vibrational dc -SHG. 

There is a second collective acoustic mode that cannot contribute to a v (0) , since 
it is totally symmetric, yet can give rise to vibrational IDRI and dc-Kerr 
hyperpolarizabilities (no other symmetries can contribute to the former in the double 
harmonic approximation). This mode, known as the longitudinal acoustic/accordion 
mode ( L A M ) , creates a Raman intensity parallel to the chain. The intensity and 
frequency of the L A M are similar to the T A M in their behavior with increasing chain 
length. Again, both properties approach zero but the ratio remains finite and, in 
general, w i l l create a vibrational hyperpolarizability. 

The importance of these acoustic modes wi l l depend to a large extent on the 
polymer architecture because of the symmetry requirements. Crude vibrational 
hyperpolarizability calculations for polyyne indicate that the L A M is significant, but not 
dominant, whereas the T A M cannot contribute because the chain is rigorously linear. 
The quantitative behavior in other instances remains to be established; our preliminary 
results suggest that the L A M is important in fully saturated polymers (e.g. polysilane), 
but not in 7C-conjugated cases. If the T A M is important then, of course, the influence of 
interchain interactions (see next section) wi l l have to be carefully evaluated. 

In te r cha in Interactions i n Polyacetylene 

The effect of the medium on N L O materials is a subject that has recently begun to attract 
attention. It is well-known (46) that the first hyperpolarizability of donor-acceptor n-
conjugated chromophores is strongly affected by solvation. However, the influence of 
the solid state environment on the second hyperpolarizability of conjugated polymers is 
a matter of debate which, thus far, has focused specifically on polyacetylene. 

Stretched fibers of P A have a definite geometric structure (47) wherein each 
polymer chain is surrounded by a regular hexagon of neighboring chains (see Fig.3) . 
Using an idealized geometry for the polymer, McWilliams and Soos (20) have 
calculated the effect of interchain interactions on the T H G spectrum by means of a 
semi-empirical valence bond configuration interaction method. They conclude that the 
interactions play a crucial role in determining the spectrum. However, this finding has 
been challenged (48) on the grounds that the short chains employed in the calculations 
are not representative of the infinite polymer. It has also been suggested elsewhere 
(49), on the basis of a density functional treatment, that chain interactions could 
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significantly alter the degree of bond alternancy and, thereby, affect the N L O 
properties. 

We have now obtained the first ab initio results (see Table VI) for the solid 
state medium effect on the static hyperpolarizability of P A in stretched fibers. These 
calculations employed the supermolecule approach on up to three interacting butadiene 
or hexatriene molecules and were carried out in a 6-31G basis. Our conclusions are 
preliminary in nature because only small oligomers were treated, yet they appear to be 
robust as seen below. 

Figure 3 shows that nearest neighbor chains may be oriented either parallel (e.g. 
a and b) or perpendicular (e.g. a and c) to one another. In either case the interaction 
leads to a 30 ± 5 % decrease (see Table VI) in the static y L per chain regardless of the 
chain length ( C 4 H 6 , C 6 H 8 ) or the level of approximation ( R H F , M P 2 , MP4(SDQ) , 
MP4(SDTQ) , C C S D ) . This is a pure electronic effect since the calculated change in 
geometry is negligible. 

The set of three nearest neighbor chains corresponds to a configuration (e.g. 
a,b,c) with one parallel, and two perpendicular, interactions. There is a further 
substantial reduction in the static y L per chain resulting in an overall decrease of 47 ± 
3%. This contrasts markedly with the findings of McWilliams and Soos (20) who 
obtain a small decrease in the same quantity due to interaction with the first nearest 
neighbor and, then, a sharp increase when the remaining neighbors are included. 
Further ab initio calculations building up to the full complement of nearest neighbors 
are in progress. 

Since the basis set we have employed is small there could be a large 
superposition error. In order to test this possibility the calculations for a single C 6 H 8 

chain were repeated in the basis set of two or three chains with the following results: 
double(ll) = 55.6 a.u.; double ( 1 ) = 54.6 a.u.; and triple (all II) = 54.8 a.u. From the 
small variation with respect to the single chain basis set value of 54.7 a.u. we conclude 
that the superposition error is negligible. 

Finally, we examine the question of pair additivity using the butadienes as an 
example. From the hyperpolarizabilities determined for a pair of chains the pair 
interaction term, A , can be determined as shown in Table VII . Then, one can predict 
the value for three interacting chains, assuming perfect additivity, and compare with 
that found by direct computation. For three parallel chains (two pairs of nearest 
neighbors; one pair of second nearest neighbors), neglecting the second nearest 
neighbor interaction leads to exact additivity (as might have been expected). However, 
in the nearest neighbor arrangement (two J _ pairs; one II pair) the simple pairwise 
additivity model breaks down. 

D i s c u s s i o n 

The ab initio finite oligomer method for determining N L O properties of conjugated 
polymers is at an early stage of elaboration. Our initial calculations, done primarily on 
P A , have established the feasibility of this approach. Although the P A repeat unit is 
small, the current pace of hardware and software advances suggests that a repeat unit 
orders of magnitude larger wi l l be computationally accessible in the near future. Some 
of the more promising areas of software development for spatially extended systems 
include: (1) various techniques for rapidly approximating most two electron integrals 
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V a 
4.18 A 

7.34 A 

Figure 3 Three dimensional geometry of stretched fibers of P A (see Ref. 19). 
Chains a and b are in the parallel configuration; chains a and c are in the 
perpendicular configuration. 

and, at the Hartree-Fock level, (2) improved numerical methods (50; also Yang, W . , 
Duke University, personal communication 1995) for solving the S C F equations and (3) 
special procedures for combining fragments (57) or lengthening chains (52). At the 
correlated level, various density functional approaches (see other contributions in this 
volume) and other "local" approximations (53) may ultimately prove to be competitive 
with the scaling employed here. Finally, for certain aspects (such as vibrational 
distortion), there might be useful ways (work in progress with Champagne, B . and 
Andre, J . M.) to hybridize the finite oligomer method with band structure techniques. 

Our goal is a comprehensive treatment of N L O activity in polymers. With this 
in mind we have considered the roles of vibrational distortion and the solid state 
medium, as well as the effects of electron correlation and frequency dispersion. There 
are still other facets that remain to be examined, especially structural defects and 
impurities. Again, the finite oligomer method seems well-suited for this purpose. 

As we have seen, both vibrational distortion and interactions with the 
environment can have a major influence on the hyperpolarizability. This implies some 
novel possibilities for designing 7i-conjugated polymers with a desired N L O response. 
For example, the contribution from individual vibrational modes depends upon a 
number of features that are potentially tunable by chemical modification. These include 
infrared activity due to the dipole generated in the longitudinal direction (42,44); Raman 
activity arising from the induced longitudinal polarizability (44); and harmonic (as well 
as anharmonic) force constants (37). The environmental contribution could be 
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modulated by specific, as well as non-specific, side-chain interactions. Finally, the 
possibilities for tuning the effect of electron correlation await further understanding of 
this phenomenon. 
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Chapter 4 

Sum-Over-State Representation of Nonlinear 
Response Properties in Time-Dependent 

Hartree-Fock Theory 
The Role of State Truncation 

Hideo Sekino and Rodney J . Bartlett 

Quantum Theory Project, Departments of Chemistry and Physics, 
University of Florida, Gainesville, FL 32611-8435 

Non-linear response properties evaluated by Time Dependent Hartree 
Fock (TDHF) theory is represented in a Sum-Over-State (SOS) for
mulation. The formalism is completely equivalent to that obtained 
by the original formulation of TDHF using perturbed density matrices 
if all intermediate, excited states are taken into consideration. Se
verely truncated SOS expressions are used in "few" state models for 
the design of NLO materials. Although a minor truncation in the in
termediate states has little effect on the calculated hyperpolarizabilities 
over the range of calculated frequencies, a more drastic truncation to 
about 50% of the states results in a breakdown in the quantitative use 
of the TDHF method, much less a truncation to only a handful of 
states. Furthermore, the individual components can be drastically in 
error, even with modest truncations. However, using TDHF to estimate 
dispersion effects for higher, correlated results by taking the percent
age (i.e., TDHF(ω)/TDHF(0) x the correlation correction) still applies 
adequately, despite severely truncating the sum-over-states. 

The theoretical investigation of non-linear optical (NLO) properties of molecules 
is one of the most challenging subjects in quantum chemistry. However, because 
NLO properties, which depend upon frequency dependent hyperpolarizabilities, are 
highly sensitive to the frequency of the applied optical field, static theories are gener
ally not thought to be able to provide a meaningful prediction of the quantity. Hence, 
we previously formulated and implemented high-order Time Dependent Hartree Fock 
(TDHF) theory (also known as the Random Phase Approximation (RPA)) to provide 
non-linear dynamic response properties such as frequency dependent hyperpolariz
abilities [1]. This permits any-order frequency dependent hyperpolarizabilities to be 

0097-6156/96/0628-0079$15.75/0 
© 1996 American Chemical Society 
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80 NONLINEAR OPTICAL MATERIALS 

efficiently evaluated analytically. Since our original development, this method has 
been widely used for theoretical predictions of N L O properties [2,3,4,5]. 

The analytic T D H F theory was originally formulated using an atomic orbital 
(AO) based algorithm [1,5] and has been recently implemented onto parallel machines 
using direct A O algorithms [6,7]. The method has also been reformulated using a 
molecular orbital (MO) based algorithm [8,9], which is highly efficient for systems 
of intermediate size. The M O based method further enables the use of diagrammatic 
techniques to analyze each term emerging in high order T D H F theory [9]. 

Equivalent equations can also be derived by diagonalization of the closed 
form resolvent operator discussed below, or, equivalently, by propagator techniques 
[10,11,12,13,14] where the non-linear optical properties are represented as high-order 
response functions by sum-over-state type formulas. We have shown that by trans
forming the excitation and deexcitation manifold, high-order response functions can 
be obtained using T D H F amplitudes and an operator representing the external per
turbation [9]. 

The advantage of the SOS formulation is that it matches the traditional inter
pretation of N L O phenomena using intermediate, excited states, especially when the 
number of the excited states is limited. The SOS formulation is also computationally 
convenient, as every component of any property at arbitrary frequency can be i m 
mediately evaluated once the response function is obtained. The problem is that the 
number of terms in the SOS response function becomes huge for even small systems. 
Since the transformation to SOS form requires a full diagonalization of a matrix with 
dimension 2(M-n)n where M is the dimension of the basis set and n is the number 
of occupied orbitals, the formulation rapidly ceases to be practical. However, i f only 
a few of the intermediate, excited states are physically important and are expected to 
contribute significantly, the SOS formulation with truncated intermediate states might 
be a useful approximation to the full response function. This is the basis for " few" 
state models of N L O behavior [15,16]. However, it is not yet clear how reliable 
such truncated SOS expressions can be. A previous semi-empirical study considered 
truncations of the determinantal space, and its deleterious effect on predicted hyper
polarizabilities, but not truncations among the actual excited, intermediate states [17]. 

In this paper, we investigate this question numerically by investigating various 
SOS truncations to the exact T D H F solution represented on T D H F = R P A intermediate 
states. We recognize that electron correlation is essential in providing predictive val 
ues for molecular hyperpolarizabilities [18], but the T D H F = R P A provides a consistent 
model that can be used to unambiguously assess the effect of the truncation. 

Theory 

The external perturbation of an oscillating electric field is YJ Ej ' Oje±xu,t, where 
J 

\Ej\ is the field amplitude and Oj is the property under consideration. The T D H F 
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4. SEKINO & BARTLETT TDHF Theory and SOS Truncation 81 

amplitude vector, U , is expanded by order and the process involved, 

V(E) = U(°) + EV{±ujl)e±i^t + ^ V ( ± u u ± u 2 ) e ± i { w i ± " 2 ) i 

+ ? U ( ± m , ±W2, i ^ e ^ 1 * " 2 ^ ( 1 ) 

o 
+... 

The density matrices, obtained through d(£)=U(£)U t(£), are expanded in the same 
manner, 

d(E) = d<°> + Ed{±uj1)e±i^t + ^d(±uju±uj2)e±i^±^i 

(2) 
+ ^ d ( ± w i , i w a , i w s j e ^ ^ ^ ) ' + ... 

o 

The dynamic non-linear response properties are given as a contraction of the perturba
tion property O with the density matrix which comprises the non-linear perturbation 
process under consideration. For the Hartree-Fock case, it is given as a contraction 
between the property corresponding to the perturbation and the one-body T D H F den
sity matrix corresponding to the process such as d(±u;,±u;), d(0,±u;),d(±a;4^,±u;)... 
for Second Harmonic Generation (SHG), Electro Optic Pockels Effect (EOPE) , Third 
Harmonic Generation (THG).. . , etc. We then have 

a ( - ^ ; w 1 ) = - r r { O d ( ± w 1 ) } 
Pi-Ua-MM) = -Tr{Od(±uj1,±uj2)} 

7( -uv ;>7 1 , a ; 2 ,u ;3 ) = - Tr{Od(±OJ^ ± w a , ± w 3 ) } 

A s we only require the virtual occupied block of U , namely U v o , the n-th order 
T D H F equations are 

A B U ^ + u ; , , +o; 2,...), ^ ( M , +w a , - . . ) i , f » w ( + w i , +^2,...) 0 
B A - u ; 2 , . . . ) j ± W * l U " ( - " i , - u , 2 , . . . ) J + - u , 2 , . . . ) J L0J 

(4) 
Here, A and B are ordinary Random Phase Approximation (RPA) matrices and LOO* = 

+ 0J2 + ... The T D H F amplitude Uvo and h v o are vectors of dimension nN when 
« is the number of occupied orbitals and N the number of virtuals. The constant 
vector, hvo, is determined solely from the lower-order solutions. 

We can formally solve the equations, 

U ^ + u ^ + c ^ , . . . ) ! h ^ + u ^ + u ; , , . . . ) 
(5) 

where 

andUV0(+a;i,+u;2> • • • )andU v o(-o;i ,-cj2, . . . ) are a pair of T D H F amplitude vectors. 
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82 NONLINEAR OPTICAL MATERIALS 

We now introduce a set of excitation and deexcitation operators {Q\,Qj} defined 
by 

tf (7) 
J= l , 2 , . . . , n 7 V 

^RPA = k r j rjj ] is a pair of the R P A solutions 
Y LA 

A B 

[B A]URPA = ±vjURpA (8) 

The amplitudes and the constant terms may be transformed onto the new basis 
{QJ,QJ}. 

and 

[ h ~ ( - W l > . . . ) ] - [ Y t Zt V » ( - < * . - W 2 , . . . ) 1 ( % ) 

The equations for the T D H F amplitudes then become 

<"*-»te:^::V^:^::ii-Ci <><» 
where D is a diagonal matrix which contains the T D H F = R P A energies {OJJ} as its 
diagonal elements. 

Thus, the T D H F amplitudes are easily solved to be 

U J { ± U J U ± U 2 , . . . ) = "—j-jz (11) 

In other words, the inverse matrix in Eqn. 5 of the 2nN dimension can be represented, 
after the transformation, as 

P H = [ y Z ] [ V
 0 ( u ; i _ D r l ] [ Y t z t i 

This gives the R P A spectral expansion of the general form 

(12) 

<• ( 1 3 ) 

in terms of the eigenvectors for the R P A excited states. 
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4. SEKINO & BARTLETT TDHF Theory and SOS Truncation 83 

In this spectral representation of the R P A propagator, the poles are equivalent to 
the square root of the eigenvalues for the matrix, 

( A + B ) * ( A - B ) ( A + B ) * (14) 

and are, therefore, positive definite for real solutions. We can obtain any order 
of T D H F amplitudes through Eqn. (13) with this matrix P(o;)~ 1 , and, therefore any 
high-order dynamic property from Eqn. (10) once the R P A equations are solved. 

However, we need to solve the full R P A equations to obtain the exact inverse 
matrix P ( u ) - 1 . One way is full diagonalization of the two nN matrices. Another 
would be the direct solution of the corresponding linear equation P(u;)U t , ° = hvo for 
the XJV0. Both are computationally demanding, but the latter is used to provide 
the untruncated R P A solution, which is our reference. On the other hand, we 
can approximate the inverse matrix using a limited number of the R P A solutions. 
In this way, we could potentially calculate approximate hyperpolarizabilities with 
less computational effort; but, more importantly, we can assess convergence of the 
computed hyperpolarizability restricted to a limited number of excited states; the main 
focus of this study. The formalism also allows us to make a physical interpretation 
of the T D H F hyperpolarizabilities using R P A intermediate states. R P A solutions with 
eigenvalues close to the value uja are expected to be important. For example, in 
the Second Harmonic Generation (SHG) case, the R P A solutions with eigenvalues 
around uja = 2UJ should have a significant contribution. 

Eqn. 4 could be solved differently by eliminating either Uvo(+a;i,+a;2> . . . ) or 
U v o ( -u; i , -a;2, . . . ) from the equation. The resulting equation contains not only terms 
proportional to uja

2 but also terms proportional to u;a- However, such a non
symmetrical transformation shows numerical instability for near zero frequency cases. 
We find that the symmetrical transformation of the R P A matrix described above to 
be the most stable, numerically. 

Calculation 

To investigate the effect of truncating intermediate states, we choose two exam
ples. Trans-butadiene is a prototype example for long polyenes where enhanced sec
ond hyperpolarizabilities, 7, are expected through the longitudinal component 7Xxxx-
We use a [3s3pld/2s] 6 -31G basis which includes polarization and diffuse functions 
[19]. Correlated results are presented elsewhere [20]. The intermediate space is 
truncated for symmetries ( A g , A u , B u , B g ) , indicating the number of roots in each 
block ordered by energy as (4,3,3,1), e.g. Second, we calculate hyperpolarizabilities 
of the water molecule which has a first hyperpolarizability, /?, as well as second 
hyperpolarizability, 7. This allows us to look at convergence for A polarizability 
consistent basis set [21] augmented by a set of d-type Cartesian Gaussian functions 
(Cd=0.1) is used. The intermediate space is truncated for symmetries ( A i , B i , B2, 
A2). Correlated results are presented in reference [18]. 
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84 NONLINEAR OPTICAL MATERIALS 

Results and Discussion 

Orientationally averaged polarizabilities and second hyperpolarizabilities of trans-
butadiene are summarized in Table 1 to Table 7. We observe that truncation of 
the R P A intermediate states does not have too much influence until the reduction 
goes beyond half of the full R P A space. When a severe truncation is imposed, the 
resulting hyperpolarizabilities deviate considerably from that obtained by the full 
space calculation. The deviation 7 from the full space calculation is not monotonic 
though a obviously is, as all contributions to the ground state polarizability have the 
same sign. For example, the truncation [35,17,35,17] provides the static polarizability 
34.97 and second hyperpolarizability 19304, while for the more severe truncation 
[3,1,3,1], the values are 18.68 and 6647, respectively, in comparison with the full 
space calculations 53.24 and 14812. The [11,5,11,5] truncation provides a 7 value of 
14613, which is, fortuitously, close to the full space value, as both larger and smaller 
truncations deviate markedly from the correct value. For example, the a value in the 
same truncation is 23.92, which is far from the one in the full space calculation. It 
seems that there is no justification whatsoever for truncating the intermediate states 
beyond half of the space [175,84,175,84]. However, the figures (Fig. 1 to Fig . 
3) indicate that the overall behavior of the hyperpolarizabilities calculated in the 
reduced space is quite similar over the frequency range considered. This means that 
the percentage correction by the T D H F method is still useful for the prediction of 
the hyperpolarizabilities by high-level correlated calculations of different non-linear 
optical processes, even in a drastically truncated scheme. 

To consider a molecule with a f3 value, the polarizabilities and first and second 
hyperpolarizabilities of the water molecule are summarized in Table 8 to Table 12 
as well as Fig . 4 to F ig . 7. The same trends are observed. That is, a modest 
truncation does not affect the calculated polarizabilities or hyperpolarizabilities, but 
the calculations with truncation beyond half of the full space provide values that 
deviate considerably from the full space calculation. Again, despite the large deviation 
of the absolute values calculated in truncated spaces compared to full space values, 
the overall curves in the frequency range of hyperpolarizabilities are quite similar to 
that of the full space calculation. 

In Tables 13 to 16, we summarize all components of the T H G 7 for trans-
butadiene for both full space and drastically truncated space calculations. Whi le the 
longitudinal component, 7xxxx, is not affected drastically by the truncation (3,1,3,1), 
the out-of-plane component, 7 Z Z Z z , in the truncated calculation is totally off from 
the full space calculation. For non-zero frequencies, Kleinman symmetry no longer 
holds. This is demonstrated by those components that would be identical assuming 
Kleinman symmetry, which take entirely different values near resonance (u;=0.075). 
The truncated space calculations seem to fail to describe even the trend in the deviation 
of each component. The longitudinal component, 7xxxx> of the Third Harmonic 
Generation (THG) tensor blows up at one-third of the frequency corresponding to 
the lowest R P A state as expected (CJ=0.75). We note that the dominant component, 
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SEKINO & BARTLETT TDHF Theory and SOS Truncation 

Table 1 Polarizability and Second Hyperpolarizability of 
Trans-Butadiene : Full Space (349,168,350,168) 

Top row corresponds to the parallel component,8 and second 
row corresponds to the perpendicular component.* 

0. 0.04 0.043 0.05 0.06 0.0656 0.075 
a 53.24 54.01 54.14 54.46 55.03 55.41 56.14 
T H G C 14812 21453 22956 27917 42604 62581 494427 

7151 7652 9306 14201 20860 164809 

D C S H G C 17607 18121 19592 22585 24932 30656 

5869 6041 6535 7546 8345 10316 

IDRI C 16580 16886 17730 19324 20470 22953 

5532 5633 5913 6434 6803 7580 

E O K E c 15657 15795 16167 16830 17277 18173 

5218 5266 5388 5610 5761 6064 

a. (7iijj^ijij+7ijji)/15 
b. {27ijji-(7iijj+7ijij))/15 
c. T H G = third harmonic generation; D C S H G = dc-induced second harmonic 

generation; IDRI = intensity dependent refractive index; E O K E = Electro Optical 
Kerr Effect. 
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NONLINEAR OPTICAL MATERIALS 

Table 2 Polarizability and Second Hyperpolarizability of 
Trans-Butadiene : Truncated Space(262,126,262,126) 

Top row corresponds to the parallel component, and second 
row corresponds to the perpendicular component.3 

0. 0.04 0.043 0.05 0.06 0.0656 0.075 
a 53.22 54.00 54.11 54.44 55.01 55.39 56.12 
T H G 14814 21456 22959 27920 42608 62586 494434 

7152 7653 9307 14203 20862 164811 

D C S H G 17610 18124 19595 22588 24935 30660 

5870 6042 6536 7547 8346 10317 

IDRI 16582 16888 17733 19326 20472 22956 

5532 5634 5914 6435 6804 7581 

E O K E 15659 15797 16169 16832 17280 18176 

5218 5265 5389 5611 5761 6065 

a. See footnotes a,b, and c in Table 1. 
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SEKINO & BARTLETT TDHF Theory and SOS Truncation 

Table 3 Polarizability and Second Hyperpolarizability of 
Trans-Butadiene : Truncated Space(175,84,175,84) 

Top row corresponds to the parallel component, and second 
row corresponds to the perpendicular component.8 

0. 0.04 0.043 0.05 0.06 0.0656 0.075 
Of 52.14 52.92 53.04 53.37 53.94 54.31 55.05 
T H G 14662 21255 22746 27668 42238 62050 489909 

7085 7582 9223 14079 20683 163303 

D C S H G 17439 17949 19409 22379 24708 30392 

5813 5984 6474 7478 8271 10229 

IDRI 16416 16720 17558 19138 20276 22741 

5477 5578 5856 6373 6738 7510 

E O K E 15502 15639 16009 16666 17110 17999 

5166 5212 5335 5555 5705 6006 

a. See footnotes a, b, and c in Table 1. 
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NONLINEAR OPTICAL MATERIALS 

Table 4 Polarizability and Second Hyperpolarizability of 
Trans-Butadiene : Truncated Space (87,21,87,21) 

Top row corresponds to the parallel component, and second 
row corresponds to the perpendicular component.8 

0. 0.04 0.043 0.05 0.06 0.0656 0.075 
a 44.17 44.92 45.04 45.36 45.91 46.27 46.98 
T H G 16267 23510 25137 30496 46293 67696 528147 

7837 8379 10165 15431 22565 176049 

D C S H G 19331 19890 21487 24728 27263 33433 

6437 6623 7156 8243 9100 11209 

IDRI 18196 18527 19442 21164 22400 25076 

6088 6202 6513 7091 7501 8366 

E O K E 17200 17351 17757 18478 18964 19937 

5727 5776 5910 6148 6310 6635 

a. See footnotes a,b, and c in Table 1. 
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SEKINO & BARTLETT TDHF Theory and SOS Truncation 

Table 5 Polarizability and Second Hyperpolarizability of 
Trans-Butadiene : Truncated Space (35,17,35,17) 

Top row corresponds to the parallel component, and second 
row corresponds to the perpendicular component.8 

0. 0.04 0.043 0.05 0.06 0.0656 0.075 
a 34.97 35.69 35.81 36.11 36.64 36.99 37.68 
T H G 19304 27406 29218 35179 52725 76499 590304 

9135 9739 11726 17575 25500 16519 

D C S H G 22740 23364 25145 28750 31565 38399 

7569 7776 8368 9574 10522 12848 

IDRI 21463 21833 22851 24763 26132 29085 

7190 7318 7669 8321 8782 9754 

E O K E 20355 20524 20978 21785 22328 23413 

6775 6830 6979 7270 7434 7784 

a. See footnotes a, b, and c in Table 1. 
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NONLINEAR OPTICAL MATERIALS 

Table 6 Polarizability and Second Hyperpolarizability of 
Trans-Butadiene : Truncated Space (11,5,11,5) 

Top row corresponds to the parallel component, and second 
row corresponds to the perpendicular component.8 

0. 0.04 0.043 0.05 0.06 0.0656 0.075 
a 23.92 24.56 24.66 24.93 25.40 25.71 26.32 
T H G 14613 21973 23654 29244 46053 69231 577427 

7324 7885 9748 15351 23077 192476 

D C S H G 17701 18268 19895 23227 25858 32333 

5930 6126 6689 7851 8776 11076 

IDRI 16547 16880 17804 19554 20819 23579 

5445 5542 5808 6300 6647 7370 

E O K E 15551 15702 16110 16836 17327 18311 

5199 5252 5396 5653 5828 6180 

a. See footnotes a, b, and c in Table 1. 
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SEKINO & BARTLETT TDHF Theory and SOS Truncation 

Table 7 Polarizability and Second Hyperpolarizability of 
Trans-Butadiene : Truncated Space (3,1,3,1) 

Top row corresponds to the parallel component, and second 
row corresponds to the perpendicular component.8 

0. 0.04 0.043 0.05 0.06 0.0656 0.0756 
a 18.68 19.24 19.33 19.57 20.00 20.28 20.83 
T H G 6647 10828 11806 15117 25504 40594 411916 

3609 3935 5039 8501 13531 137305 

D C S H G 8382 8703 9631 11558 13101 16965 

2782 2888 3193 3832 4347 5652 

IDRI 7727 7914 8435 9432 10159 11759 

2610 2678 2865 3220 3474 4024 

E O K E 7173 7257 7485 7892 8168 8724 

2383 2410 2483 2614 2704 2886 

a. See footnotes a, b, and c in Table 1. 
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NONLINEAR OPTICAL MATERIALS 

Table 8 Polarizability and Hyperpolarizabilities 
of Water : Full Space (89,52,73,41) 

0. 0.04 0.043 0.06 0.0656 0.08 0.1 

of 8.538 8.576 8.583 8.625 8.642 8.694 8.787 

1.093 1.084 1.083 1.072 1.068 1.055 1.029 

S H G b 10.22 10.85 10.96 11.74 12.08 13.21 15.66 

E O P E b 

10.22 

10.42 10.46 10.69 10.78 11.08 11.61 

T H G b 952 1091 1116 1322 1426 1862 4910 

D C S H G C 

952 

1017 1028 1111 1147 1268 1540 

IDRI C 

952 

995 1002 1053 1075 1145 1285 

E O K E c 

952 

972 976 1000 1010 1041 1097 

a. c*|| = \(axx + otyy + azz)\ a± = [̂(<**x - <*yy)2 + (<*** - azz)2 + 

(<*yy - oczz)2]1*. 
b. SHG = second harmonic generation; EOPE = Electro Optical Pockel Effect; 

THG = third harmonic generation. 
c. See footnote c in Table 1. 
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SEKINO & BARTLETT TDHF Theory and SOS Truncation 

Table 9 Polarizability and Hyperpolarizabilities of 
Water : Truncated Space (67,39,55,31 )a 

0. 0.04 0.043 0.06 0.0656 0.08 0.1 
8.499 8.538 8.544 8.586 8.603 8.655 8.724 
1.192 1.183 1.182 1.171 1.671 1.153 1.126 

SHG 10.27 10.90 11.01 11.79 12.14 13.27 15.73 

EOPE 

10.27 

10.47 10.50 10.74 10.83 11.13 11.67 

T H G 953 1092 1117 1324 1428 1865 4922 

D C S H G 

953 

1019 1030 1112 1148 1270 1543 

IDRI 

953 

996 1003 1054 1076 1146 1287 

E O K E 

953 

974 977 1002 1012 1042 1099 

a. See footnotes a, b, and c in Table 8. 

Table 10 Polarizability and Hyperpolarizabilities of 
Water : Truncated Space (45,26,37,21 )a 

0. 0.04 0.043 0.06 0.0656 0.08 0.1 
a \ \ 8.141 8.179 8.184 8.227 8.244 8.296 8.388 

1.531 1.523 1.521 1.511 1.507 1.494 1.468 
SHG 8.99 9.62 9.72 10.50 10.84 11.96 14.40 

EOPE 9.19 9.22 9.45 9.55 9.84 10.37 

T H G 974 1116 1141 1351 1457 1900 4994 

D C S H G 1041 1052 1136 1173 1296 1573 

IDRI 1018 1025 1077 1099 1171 1314 

E O K E 995 999 1023 1033 1065 1122 

a. See footnotes a, b, and c in Table 8. 

 A
ug

us
t 1

5,
 2

01
2 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e:
 M

ay
 5

, 1
99

6 
| d

oi
: 1

0.
10

21
/b

k-
19

96
-0

62
8.

ch
00

4

In Nonlinear Optical Materials; Karna, S., et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1996. 



NONLINEAR OPTICAL MATERIALS 

Table 11 Polarizability and Hyperpolarizabilities of 
Water: Truncated Space (22,13,18,10)a 

0. 0.04 0.043 0.06 0.0656 0.08 0.1 
6.364 6.400 6.405 6.445 6.461 6.510 6.597 
2.175 2.168 2.167 2.160 2.157 2.146 2.126 

SHG 19.90 20.74 20.88 21.90 22.34 23.79 26.86 

EOPE 

19.90 

20.17 20.22 20.52 20.65 21.03 21.73 

T H G 1167 1327 1356 1591 1710 2202 5615 

D C S H G 

1167 

1243 1255 1350 1391 1530 1840 

IDRI 

1167 

1217 1225 1284 1309 1390 1551 

E O K E 

1167 

1192 1196 1223 1235 1270 1334 

a. See footnotes a,b, and c in Table 8. 

Table 12 Polarizability and Hyperpolarizabilities of 
Water: Truncated Space (4,2,3,1 )a 

0. 0.04 0.043 0.06 0.0656 0.08 0.1 

<*ll 1.910 1.929 1.932 1.953 1.961 1.988 2.035 
0.365 0.355 0.353 0.341 0.336 0.321 0.292 

S H G 14.48 15.29 15.43 16.44 16.88 18.34 21.50 

EOPE 

14.48 

14.74 14.78 15.08 15.21 15.58 16.28 

T H G 518 613 631 780 859 1205 3996 

D C S H G 

518 

563 570 627 653 740 946 

IDRI 

518 

547 552 587 602 651 753 

E O K E 

518 

532 535 551 558 579 618 

a. See footnotes a, b, and c in Table 8. 
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SEKINO & BARTLETT TDHF Theory and SOS Truncation 

Table 1 3 Third Harmonic Generation 7(-3o;,;a;j,a;k,a;|) ; 
Full v.s. Truncated(Ag,Au,Bu,Bg) 

LJ = 0. (in a.u.) 

Components (i;j,k,l) Full (3,1,3,1) 
(x;x,x,x) 23,514 26,916 

(y;y.y.y) 6,860 1,436 
(z;z,z,z) 13,291 95 

(x;x,y,y), (x;y,y,x), (x;y,x,y) (y;y,x,x), 
(y;x,x,y), (y;x,y,x) 

2,965 1,607 

(y;y,z,z), (y;z,z,y), (y;z,y,z) (z;z,y,y), 
(z;y,y,z), (z;y,z,y) 

3,396 131 

(x;,x,z,z), (x;z,z,x), (x;z,x,z) (z;z,x,x), 
(z;,x,x,z), (z;,x,z,x) 

8,837 656 

Classical Orientational Average 14,812 6,647 

Table 14 Third Harmonic Generation -y{-3u\;uj\,Uk,oj\) ; 
Full v.s. Truncated(Ag,Au,Bu,Bg) 

w = 0.043 (in a.u.) 

Components (i;j,k,l) Full (3,1,3,1) 
(x;x,x,x) 41,533 49,054 

(y;y,y>y) 8,416 1,838 
(z;z,z,z) 17,900 146 

(x;x,y,y), (x;y,y,x), (x;y,x,y) 4,612 2,592 

(y;y,x,x), (y;x,x,y), (y;x,y,x) 3,667 2,351 
(y;y,z,z), (y;z,z,y), (y;z,y,z) 4,385 125 
(z;z,y,y), (z;y,y,z), (z;y,z,y) 4,683 224 
(x;,x,z,z), (x;z,z,x), (x;z,x,z) 15,985 1,956 
(z;z,x,x), (z;,x,x,z), (z;,x,z,x) 13,598 744 
Classical Orientational Average 22,956 11,806 
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NONLINEAR OPTICAL MATERIALS 

Table 15 Third Harmonic Generation -y(-3u}\;vi,u>k,u>\) ; 

Full v.s. Truncated(Ag,Au,Bu,Bg) 

w = 0.0656 (in a.u.) 

Components (i;j,k,l) Full (3,1,3,1) 
(x;x,x,x) 146,475 174,747 

(y;y.y.y) 11,652 2,474 
(z;z,z,z) 30,424 331 

(x;x,y,y), (x;y,y,x), (x;y,x,y) 13,841 8,784 

(y;y,x,x), (y;x,x,y), (y;x,y,x) 4,463 3,680 
(y;y,z,z), (y;z,z,y), (y;z,y,z) 6,839 -302 
(z;z,y,y), (z;y,y,z), (z;y,z,y) 8,784 587 
(x;,x,z,z), (x;z,z,x), (x;z,x,z) 59,849 11,861 
(z;z,x,x), (z;,x,x,z), (z;,x,z,x) 30,579 809 
Classical Orientational Average 62,581 40,594 

Table 16 Third Harmonic Generation 7(-3o;i;u;j,a;k,u;|) ; 
Full v.s. Truncated(Ag,Au,Bu,Bg) 

u> = 0.075 (in a.u.) 

Components (i;j,k,l) Full (3,1,3,1) 
(x;x,x,x) 1,522,212 1,805,864 

(y;y>y>y) 19,002 -983 
(z;z,z,z) 47,867 699 

(x;x,y,y), (x;y,y,x), (x;y,x,y) 135,603 96,956 

(y;y,x,x), (y;x,x,y), (y;x,y,x) -6,516 726 
(y;y,z,z), (y;z,z,y), (y;z,y,z) 16,785 -9,799 
(z;z,y,y), (z;y,y,z), (z;y,z,y) 15,668 1,346 
(x;,x,z,z), (x;z,z,x), (x;z,x,z) 659,666 164,182 
(z;z,x,x), (z;,x,x,z), (z;,x,z,x) 61,846 588 
Classical Orientational Average 494,427 411,916 
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SEKINO & BARTLETT TDHF Theory and SOS Truncation 

x l O 4 

0.00 1.31 2.62 3.94 5.25 6.56xl0" 2 

Frequency(a.u.) 

Figure 1. Trans Butadiene 7 Ful l Space [349, 168, 350, 168] 

x l O 4 

0.00 1.31 2.62 3.94 5.25 6 .56xl0 2 

Frequency(a.u.) 

Figure 2. Trans Butadiene 7 Reduced Space [87, 21, 87, 21] 
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98 NONLINEAR OPTICAL MATERIALS 

DC-SHG 

5.25 6.56xl0" 2 

Frequency(a.u.) 

Figure 3. Trans Butadiene 7 Reduced Space [3, 1, 3, 1] 

18.00 

14.00 

12.00 

8.00 
0.00 0.02 0.04 0.06 0.08 

Frequency (a.u.) 

Figure 4. Water-/? Fu l l Space [89, 52, 73, 41] 
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100 NONLINEAR OPTICAL MATERIALS 

60.0 

50.0 

40.0 - A T H G 

^ 30.0 

20.0 

10.0 - D C - S H G 
- ~ I D R I 

• - : E O K E 

o.o 0.00 0.02 0.04 0.06 0.08 0.10 

Frequency (a.u.) 

Figure 7. Water 7 Reduced Space [4, 2, 3, 1] 

7xxxx, is relatively well described even in the drastically truncated space calculations 
although the second- and third-largest components are not. The orientationally 
averaged hyperpolarizabilities are relatively well described in the truncated scheme 
when the applied frequency approaches the resonance. This is because the 7xxxx term 
becomes dominant in the averaging sum for the near resonance situation. 

In conclusion, while the SOS formalism is a useful tool to qualitatively analyze 
non-linear optical phenomena through percentage dispersion effects, it is severely 
limited for the quantitative evaluation of absolute hyperpolarizabilities. In particular, 
for the lesser components, the truncated calculations are quite unreliable. The 
argument for using the SOS formula for the longitudinal component may be partially 
rationalized for near resonance situations, since the longitudinal component becomes 
overwhelmingly dominant in that case. 

These results lend litde support for the use of "few state" models for design 
purposes, insofar as such analyses are contingent upon a reasonably accurate mag
nitude of the hyperpolarizabilities. Some situations, such as in /? materials, where 
potentially dominant charge transfer excited states caused by adding electron pushing 
and withdrawing groups are not considered in the two examples discussed, but we 
would expect similar limitations for that case as wel l , since there are many electronic 
states whose individual contribution might be small, but whose total is a significant 
part of the value of the hyperpolarizability. 
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Chapter 5 

Early Theoretical Studies of Third-Order 
Nonlinear Electric Susceptibilities 

Hendr i ck F . Hameka 

Department of Chemistry , University of Pennsylvania, 
Phi ladelphia , PA 19104-6323 

We review the theoretical work on the third order-nonlinear electric 
susceptibility γ. We discuss various general theoretical approaches and 
applications to polyenes and benzene where theoretical results may be 
compared with experimental data. Various applications to other 
aromatic molecules are also mentioned. It is concluded that theoretical 
procedures based on the semiempirical Pariser-Parr-Pople method give 
satisfactory results for conjugated and aromatic molecules. 

I. Introduction 

It is not particularly difficult to extend the theoretical description of electric 
susceptibilities to higher order terms but few efforts in this direction were reported 
before the experimental discovery of various nonlinear optical effects around 1960. As 
early as 1962 Franken and Ward (1) presented a review of those early experimental 
discoveries together with a theoretical analysis. During the next few years there was a 
great deal of experimental activity in nonlinear optics and in 1965 Ward (2) presented 
an extensive theoretical analysis of the various nonlinear optical effects and their 
relation to corresponding higher-order electric susceptibility terms. Bloembergen (3), 
who is one of the pioneers in nonlinear optics, prefers also to give a unified description 
of various nonlinear optical effects based on the generalized polarization P(r; t) of the 
medium. This polarization Ρ is then represented as a power series expansion in terms 
of the electric field strength E i (i = x, y, z): 

(1) 

Here the symbol α denotes the linear polarizability, β denotes the second-order and γ 
the third-order nonlinear susceptibility, etc. 

During the seventies we became interested in one particular nonlinear optical effect 
namely the electric-field induced second harmonic generation. We introduced the 
acronym EFISH (4) for this effect and this name has been generally adopted since then. 
We felt that the EFISH effect might become very important because of its potential 
application for modulator devices in light wave communication systems. Our 

0097-6156/96/0628-0102$15.00/0 
© 1996 American Chemical Society 

 A
ug

us
t 1

5,
 2

01
2 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e:
 M

ay
 5

, 1
99

6 
| d

oi
: 1

0.
10

21
/b

k-
19

96
-0

62
8.

ch
00

5

In Nonlinear Optical Materials; Karna, S., et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1996. 



5. HAMEKA Third-Order Nonlinear Electric Susceptibilities 103 

expectations were not realized but the theory of the E F I S H effect became an interesting 
problem in molecular quantum theory. 

The E F I S H effect was first discovered by Terhune et.al. (5,6) in crystals and later 
by Mayer (7) in gases and liquids. A theoretical description of the E F I S H effect based 
on the classical Maxwel l equations was presented by Kiel ich (8). We studied the effect 
from the point of view of photon scattering (9) in order to express it in terms of 
molecular parameters. Our conclusions agreed with Kielich's work (8). We should 
differentiate between a temperature dependent E F I S H effect for polar molecules 
depending on the electric dipole orientation of the molecules in the D C electric field and 
a temperature independent E F I S H effect for nonpolar molecules related to the third-
order electric susceptibilities y. 

The temperature independent effect is interesting from a theoretical point of view 
because its magnitude is related to a fourth-order energy perturbation. It seems that this 
was the first time in the history of quantum chemistry that a fourth-order perturbation 
term is related to practical applications. 

During the early seventies attention was focused on compounds occurring in the 
human retina. Hermann, Richard and Ducuing (10) reported measurement on P-
carotene and Hermann and Ducuing (11) measured the third-order susceptibilities of 
some other long-chain conjugated hydrocarbons. 

Levine and Bethea (12) presented an extensive and careful experimental effort 
based on static field induced second harmonic generation in liquids to determine both 
second and third order hyperpolarizabilities P and y for a wide range of conjugated and 
nonconjugated organic molecules. Ward and Elliott (13) used the same experimental 
technique in the gas phase to determine the third-order hyperpolarizability y for four 
organic molecules: ethylene, benzene, 1,3-butadiene and 1,3,5-hexatriene. The 
experimental results of Levine and Bethea (12) and of Ward and Elliott (13) constitute a 
useful basis for testing the accuracy of theoretical methods for calculating the third-
order hyperpolarizabilities of organic molecules. 

A t this stage, around 1975, it became already quite clear that the E F I S H effect 
could be applied to the design of modulator or amplifier devices only i f we could 
discover and identify materials with unusually large P and y values. In such a search 
theory could potentially play a useful role. If theoretical considerations could indicate 
which types of materials might have unusually large P or y values then theory would 
make a useful contribution even if its numerical predictions had only limited accuracy. 
We should add that the calculation of higher order electric susceptibilities constitutes an 
interesting theoretical problem even i f we disregard the potentially useful applications. 

During the past twenty years an enormous amount of experimental and theoretical 
work on second-order and third-order nonlinear susceptibilities and on related topics 
have been reported in the literature. The field was extensively reviewed in a book, 
edited by Chemla and Zyss in 1987 (14) and in a book by Prasad and Wil l iams (15). 
Recendy, Andre* and Delhalle (16) and Bredas, Adant, Tackx, Persoons and Pierce (17) 
published two very extensive review articles quoting almost five hundred references. 
However, the bulk of the work quoted in these two reviews (16, 17) deals with the 
second-order nonlinear susceptibility P and only a small part describes work on the 
third-order susceptibility y. 

For example, we quote from reference 16: "Definite successful theoretical and 
experimental achievements have been made in the area of p. The same cannot be 
claimed for the nonlinear hyperpolarizability y where both theory and experiment are at 
a very early stage of the understanding of the underlying processes in second-order 
effects." W e also quote from reference 17: "Only the pure electronic third-order 
polarizability of centrosymmetric molecules is directly accessible by the E F I S H 
technique. It is clear that for this reason it is a limited technique". 
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In the present paper we plan to limit ourselves to calculations of the third-order 
nonlinear susceptibility y and we focus on some general and fundamental aspects of the 
theory only. We hope that the limited scope of our efforts supplements the recent 
review articles (15, 16, 12) rather than competes with them. 

II. General Theory 

From a quantum chemical point of view we find it convenient to relate the third-order 
nonlinear susceptibility to the fourth-order energy perturbation of a molecule due to a 
homogeneous electric field F. We realize that the variety of nonlinear optical effects are 
related to time-dependent susceptibilities where the perturbing electric fields are time-
dependent. However the extension of the perturbation procedure from static to time-
dependent field is fairly straightforward and it is convenient to focus on the static third-
order susceptibilities first. 

If we want to consider the perturbation of a freely rotating molecule in a gas or 
liquid we should differentiate between the space-fixed coordinate system (x,y,z) and a 
coordinate system ( X , Y , Z) attached to the molecule. The transformation between the 
two sets of coordinate systems is described by a set of Eulerian angles (18). First we 
consider the perturbation of the molecule, described by a Hamiltonian H0, due to a 
homogeneous electric field F x relative to the space fixed coordinate system. We write 
the perturbed Hamiltonian H as 

H = H0 + XV = H0-[ixFx (2) 

The perturbed energy E 0 and eigenfunction ^FQ of the Hamiltonian H are defined as a 
power series in X: 

E0 = e0 + X E 0 , i + X2 E 0 , 2 + X3 E 0 , 3 + X4 E 0 , 4 + 
V0 = V0 + X ¥ 0 f i + * 2 ^ 0 , 2 + V ^ o , 3 + 0 ) 

where e 0 and 0Co are the unperturbed eigenvalue and eigenfunction of the Hamiltonian 
H0. The energy perturbations E 0 , 3 and E 0 ) 4 are expressed in terms of the eigenfunction 
perturbations as follows (19) 

E 0 , 3 = < l I V i l V - E 0 , 1 I H V > 
E 0 , 4 = <W0,1 I V - E 0 , i I ¥ 0 f 2 > - E 0 , 2 <¥ 0 ; i 1 *<U > (4) 

It is important to note that the third-order energy perturbation E 0 ) 3 and the 
hyperpolarizabilities (3 may be derived from the first-order perturbed wave function 
* F 0 f i but that the fourth-order energy perturbation depends on the second-order 
perturbed wave function * F 0 , 2 . Consequently, the calculation of E 0 , 4 and y is an order 
of magnitude more complex than the calculation of E a 3 and p. The calculation of y for 
even small systems such as the helium atom or the hydrogen atom requires a 
considerable computational effort. Computations of y for molecules of practical interest 
such as benzene or conjugated hydrocarbons require some drastic approximations and it 
is difficult to make a priori predictions about the accuracy of the computed results. 

Let us now return to the transformation between the space-fixed coordinate system 
(x,y,z) and the molecular coordinate system ( X , Y , Z ) . W e define the energy 
perturbation E 0 (x,x,x,x) as the fourth order energy perturbation due to the perturbation 
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5. HAMEKA Third-Order Nonlinear Electric Susceptibilities 105 

- j i x F x , the experimental hyperpolarizability y is given by 

J = X(x3xxx = - 4 E 0 (x,x,x,x) = - 4 E 0 (x4) (5) 

In order to compute this quantity we must transform it to the molecular coordinate 
system ( X , Y , Z ) . B y introducing Eulerian angles (18) and averaging over molecular 
orientations (20) we obtain 

E 0 (X*) = (1/5) [ E 0 (X4) + E 0 (Y4) + E 0 (Z*)] 

+ (1/15) [ E 0 ( X 2 Y 2 ) + E 0 ( X 2 Z 2 ) + E 0 ( Y 2 Z 2 ) ] (6) 

For larger molecules it is preferable to expand the perturbation energies in terms of 
the unperturbed eigenvalues E K and eigenfunctions * F K of the molecule. The 
corresponding expression is 

Eo (X4) = - Z K ? L £ M ( E K - Eo)" 1 ( E L - E ^ 1 ( E M - E0yl V O K V K L V L M V M D 

+ [ I K ( E K - Eo)- 1 V O K V K O ] P L ( E L - Eo)" 2 V O L V L O ] (7) 

where the matrix elements are defined as 

V K L = < ^ K l t e l ^ L > e t c . (8) 

The other contributions to E q (6) are double perturbation terms, their expansions are 
given by 

E 0 ( X 2 Y 2 ) = - Z K Z L X M ( E K - Eo)" 1 ( E L - Eo) ' 1 ( E M - Eo)" 1 

X [ V O K V K L W L M W M O + V O K W K L V L M W M O + V O K W K L W L M V M O 

+ W O K V K L V L M W M O + W O K V K L W L M V M O + W O K W K L V L M V M o l 
+ I K I I ( E 0 - E K ) " 1 ( E 0 - E L ) " 2 [ V O K W K O + W O K V K O ] [ V O L W L Q + W O L V L Q ] 

+ I K I L ( E O - E K ) - I ( E 0 - E L ) - 2 [ V O K V K O W O L W L O + W O K W K O V O L V L Q ] (9) 

with 
V K L = < ^ K l f e l ^ L > W K L = < l I / K l [ i Y l ^ L > e t C . (10) 

It may seem that the above expressions are unduly complicated but they are easily 
programmed. 

The general perturbation expressions that we have presented outline two alternative 
approaches to the calculation of y. The first approach is based on the perturbation 
expansions (7) and (9). The second approach is based on Eq . (4), here a procedure 
must be developed to solve two successive inhomogeneous differential equations in 
order to obtain the functions ¥ 0 , 1 and *F0,2. There is a third approach to compute y, 
this involves a numerical procedure in solving the molecular Schrodinger equation in 
the presence of an electric field. The latter method was first proposed by Cohen and 
Roothaan (21). 

It is of course necessary to reduce these general theoretical approaches to 
procedures that may be applied to reasonably sized molecules with acceptable 
accuracies. Most of these procedures are related to the use of the Hartree-Fock method. 
Much attention has been focused on conjugated hydrocarbon chains, either finite length 
chains or polymers and the latter applications have specific theoretical requirements. 
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106 NONLINEAR OPTICAL MATERIALS 

We limit ourselves to a brief outline of the numerical approaches. The original 
suggestion by Cohen and Roothaan (21) was based on the use of the Hartree-Fock 
procedure. The method has been applied at the ab initio level (22) and it has also been 
interfaced with the M O P A C semiempirical program (23) by Kurtz, Stewart and Dieter 
(24). The latter obtained a reasonably good result for benzene (y = 0.71 x 1 0 3 6 esu) 
by using the parameters that had been introduced for linear susceptibilities. The 
numerical approach has also been used by Matsuzawa and Dixon (25, 26). Matsuzawa 
and Dixon's work is based on the use of semiempirical computer programs, either 
M N D O or M O P A C (23). Their theoretical y value for benzene is 0.5 x 10" 3 6 esu, 
about half the experimental value. 

III. Applications to Polyene Chains 

We mentioned that theoretical work on calculations of y are directed towards materials 
that might have unusually larger y values. Consequently the theory has been focused 
on conjugated organic molecules. Conjugated hydrocarbon chains (polyene chains) 
have especially attracted attention and we discuss them in this section, other conjugated 
molecules and especially benzene are considered in section IV and V . 

One of the earliest measurements on third order nonlinear optical efforts was the 
work by Hermann, Richard and Ducuing (10) on (3-carotene. This was followed by 
measurements on some other molecules with long hydrocarbon chains that occur in the 
human retina (11). Meanwhile Rustagi and Ducuing (27) had calculated the third-order 
electric susceptibilities of linear hydrocarbon chains based on the free-electron model. 

W e decided at the time that the accuracy of this work could be improved by making 
use of the Huckel method (28) especially since we discovered that the Htickel equations 
of a linear conjugated hydrocarbon chain in a homogeneous electric field can be solved 
analytically (29). This was a fairly crude calculation neglecting bond alternation and 
correlation effects. One important conclusion describes the relation between y and the 
chain length N , which was found to be 

y = A N 5 - 3 

Our calculation (29) seemed to be based on a reasonable set of assumptions but 
subsequent investigations revealed that many of these assumptions were not justified. 
First we discovered that the third-order susceptibilities of conjugated hydrocarbon 
chains could not be approximated by a one-dimensional model. Inclusion of the terms 
E 0 ( Y 4 ) and E 0 ( X 2 Y 2 ) , i n addition to E 0 ( X 4 ) caused a significant change in the 
theoretical y values (30). 

In a subsequent calculation (31) we abandoned the analytical approach altogether 
and we used the perturbation expressions of Eqs. (7) and (9) instead. We assumed that 
the ground state Hartree-Fock wave function could be approximated by a single-
determinant S C F function. The excited states K and M in the perturbation expansions 
(7) and (9) may then be represented by all possible single-excitation molecular wave 
functions. In the case of the excited states L nonzero contributions are obtained from 
both single-excitation and double-excitation excited states, we presented a detailed 
analysis of all possibilities (31). 

The theoretical results for the nonlinear susceptibilities y of conjugated 
hydrocarbon chains show a surprising trend. The y values are negative for small 
values, N = 4 to N = 12, and they become positive for N = 14 and higher. It is 
therefore not feasible to represent y by a single power of N which is valid for all values 
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5. HAMEKA Third-Order Nonlinear Electric Susceptibilities 107 

of N . The numerical y values of the perturbation calculation (31) are quite different 
from the earlier analytical theory (29). It should therefore be concluded mat the results 
of the earlier calculation (29) are not meaningful even though the underlying 
approximations seemed quite reasonable at the time. 

There is a good reason for the erratic behavior of the theoretical y values. They are 
obtained as small differences between relatively large positive and negative 
contributions and relatively small changes in these contributions give rise to large 
changes in the final theoretical predictions for y. 

During the past two decades many experimental and theoretical studies of 
polyacetylene chains and related polymers have been reported (16). One aspect of these 
efforts relates to the calculations of the linear polarizabilities a . These are much easier 
to calculate than the third order polarizabilities y and the various theoretical procedures 
have a much higher degree of sophistication (32). We briefly discuss some of the 
procedures for calculating a values since they allow us to evaluate the accuracy of the 
approach. Some of the Huckel calculations were reviewed by Andre* and Champagne 
(33). 

Risser et al (34) computed a from the Huckel equations using conventional 
perturbation theory, it appears that these authors were not aware that these equations 
could be solved analytically. Flytzaniz (35) solved the perturbed Huckel equations in 
Terms of Bessel functions, he was also unaware of our earlier work. 

It should be noted that we recalculated the polarizabilities of polyacetylene chains 
by using the Pariser-Parr-Pople method (36, 37, 38), we found that the P P P values are 
about one fourth the Huckel values (39). Soos and Hayden (40) found an even larger 
decrease in value when they derived the static polarizabilities a of the II electrons in 
conjugated polymers from exact solutions of the PPP Hamiltonian rather than from the 
Huckel methodg. The linear polarizabilities of finite polyacetylene chains have also 
been computed from ab initio procedures, either by using the finite-field method (21, 
41) or by using the coupled perturbed Hartree-Fock method (42, 43). We should also 
mention the work by de Delo and Silbey (44). 

Since Ward and Elliott (13) reported experimental y values for the smallest 
polyenes, ethylene, 1,2-butadiene and trans,-1,3,5-hexatriene some effort was made to 
calculate these quantities with a greater degree of accuracy. We calculated the static y 
values (45) with the Pariser-Parr-Pople method (36, 37, 38), the results are reported in 
Table I. Karna et al (46) calculated both the static and frequency-dependent values with 
the ab initio time-dependent Harfree-Fock method. We list the experimental Ward and 
Elliott values at X = 0.69 |xm (13), our static values (45), Karna et al's static values 
(46) and their X = 0.69 values al l in Table I. It may be seen that Kama's theoretical 
results agree remarkably well with the experimental values. Our static results should 
not be directiy compared with the frequency dependent values but they agree within an 
order of magnitude. Nevertheless Kama's values are closer to experiment than ours. 

Our survey of the various theories of linear susceptibilities is far from complete 
but our brief overview confirms the idea (32) that the P P P level of approximation leads 
to satisfactory results for linear susceptibilities irrespective of the specific theoretical 
approach. A t the present time the P P P level of approximation is the best that is 
compartible with the present computer capabilities for polymers and large molecules. 

Finally we should mention that Yaron and Silbey (47) have studied the vibrational 
contributions to third-order nonlinear susceptibilities and that Hefl in, Wong, Zamani-
Khamir i and Garito (48) performed a C N D O calculation including configuration 
interaction. These authors find that the space averaged susceptibility y is essentially 
determined from the longitudinal energy perturbation E 0 ( X 4 ) , a conclusion which is 
contradictary to our previous findings (30). 
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Table I Experimental and theoretical y values for ethylene, 1,3-butadiene 
and 1,3,5-hexatriene 

Ethylene Butadiene Hexatriene 

exp (ref 13) 0.758 2.30 7.53 

2 M H (ref 45) -0.028 1.345 9.92 

K P ( r e f 4 6 ) 0.500 1.41 3.19 

KP(k = 0.69) 1.129 2.46 7.36 

Table II Fourth-order energy perturbations of benzene according to the 
extended Huckel method 

K a Total 

E 0 ( X 4 ) - 0.3295 - 0.0320 - 0 .3 6 1 5 

E 0 ( Y 4 ) - 0.3305 -0 .0312 -0 .3617 

E 0 ( Z 4 ) 0 0 0.0064 

E 0 ( X 2 Y 2 ) - 0.6555 -0 .0715 - 0.7270 

E 0 ( X 2 Z 2 ) 0 0 - 0 . 1 6 9 6 

E 0 ( Y 4 Z 2 ) 0 0 - 0 . 1 6 9 9 

E 0 ( x 4 ) - 0 .1757 -0 .0174 - 0.21445 

Y 0.7028 0.0696 0.8578 

I V . Applications to Benzene 

There are good reasons why much of the subsequent theoretical studies of third-order 
susceptibilities dealt with the benzene molecule. During many years this was one of the 
few systems for which accurate experimental information was available and this was 
one of the few larger molecules where approximate theories could be verified. 

We already mentioned the experimental work by Levine and Bethea (12) and 
subsequent more precise measurements by Ward and Elliott (13). Earlier results by 
Hermann (49) are not consistent with these authors (12, 13) and we w i l l not consider 
them. Both Levine and Bethea (12) and Ward and Elliott (13) measured frequency 
dependent y values. More recently Shelton (50) measured y at a few more frequencies 
and he extrapolated his results to zero frequency in order to predict the static 
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5. HAMEKA Third-Order Nonlinear Electric Susceptibilities 109 

polarizability y = % x x x x . Shelton reports a value y = 0.73 ± 0.09 ( 1 0 6 0 C 4 m 4 J 3 ) . 
We use esu units and we convert Shelton's result to y = 0.98 ± 0.12 (10 - 3 6 esu). 

Schweig (51) had already calculated y values for a group of conjugated molecules 
using a variation method. He reports a value of 1.4 x 1 0 3 6 esu units for the molecular 
parameters % x x x x and Xyyyy. We are not quite sure how to interpret his result but i f we 
use E q . (6) and i f we assume the double perturbation term to be zero we obtain y = 

0.56 x 1 0 3 6 esu, which is not a bad value. 
Our first effort to calculate y for benzene (52) was based on the rather crude C N D O 

method and it produced a value that was much too high, y = 6.15 x 10" 3 6 esu. A 
subsequent effort (53) based on semiempirical Huckel theory and limited to 7C electrons 
only, yielded an equally poor result y = 0.07 x 10" 3 6 esu. 

It seemed to us that a more accurate approach to the problem is needed in order to 
get reliable results. In a subsequent effort (54) we made use of the extended Huckel 
method (55) and the Pariser, Parr Pople method (36, 37, 38). 

We list some of the details and intermediate results of our calculations in Table II 
and III because we hope that they may be helpful in evaluating the accuracy of the 
results. Table II contains our results of the extended Huckel calculations. First they 
show the relative magnitude of the 7C and a electron contributions. It should be noted 
first that the total effect contains both the % and a contributions and also a contribution 
of the 7C - o interactions so that it is not simply the sum of the n and a terms only. 
Nevertheless, the bulk of the effect, roughly 80%, is due to the n electrons only. It 
should be noted also that the X 4 and Y 4 terms are slightly different, violating symmetry 
conditions. The small differences are due to truncation of the set of wave functions that 
were used in the expansion because the X 4 and Y 4 terms would have been exactiy equal 
i f we had used a complete set of functions. Nevertheless, the differences are relatively 
small and this indicates that the truncations do not lead to significant errors. We should 
point out that the symmetry condition was not satisfied in an earlier paper (52) where 
the limited size of the set of eigenstates in the expansion did not produce a satisfactory 
theoretical result. Finally, it should be noted that the double perturbation terms X 2 Y 2 

etc. produce about a third of the total effect. It is a matter of speculation wether 
inclusion of these terms in Schweig's work (51) might give rise to a significant 
improvement in the accuracy of his results. 

In computing the energy perturbations E 0 (X 4 ) and E 0 ( X 2 Y 2 ) from Eqs. (7) and 
(9) we separate the expansions into three parts which we denote by A , B and C. It is 
assumed here that we make use of the Hartree Fock S C F approximations so that the 
ground state O corresponds to a closed shell single-determinant eigenstate. In the triple 
sums of Eqs. (7) or (9) the eigenstates K and M correspond to single-excitation 
eigenstates whereas the eigenstates L correspond to either singly or doubly excited 
eigenstates (31). The contributions to the triple sum due to singly excited L states is 
denoted as the A term and the contributions to the triple sum due to doubly excited L 
states is denoted as the B term. The other part of each perturbation expansion, the 
double sum, is called the C term. It follows from Eq . (4) that the A and B terms are 
both negative and produce a positive contribution to y whereas the C terms is positive 
and produces a negative contribution to y . In principle, either negative or positive 
theoretical y values are possible depending on the relative magnitude of the A , B and C 
terms. 

It may be seen from Table III that in the benzene case the final y value is a 
relatively small difference between the positive and A and B contributions and the 
negative C term and that our theoretical result is quite sensitive to small changes in the 
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Table III Fourth-order energy perturbations of the benzene n electron system 
according to PPP theory 

A term B term C term Total 

E 0 ( X 4 ) - 0.6423 - 1.3226 1.5461 - 0 . 4 1 8 8 

E o ( Y 4 ) - 0.6423 - 1.3226 1.5461 - 0 . 4 1 8 8 

Eo ( X 2 Y 2 ) - 1.2855 -2 .9631 3.0921 - 1.1555 

E o ( x 4 ) - 0.34255 - 0.72658 0.82458 - 0.24455 

Y 1.3702 2.9063 - 3.2983 0.9782 

Table IV Theoretical y values for Benzene (in terms of 10" 3 6 esu) 
from various authors 

Y Authors Ref 

0.71 Kurtz etal (1990) 24 

0.56 Schweig (1967) 51 

1.133 Zamani etal (1980) 54 

1.243 Waite etal (1982) 56 

1.279 Perrin et al, S C F (1989) 57 

1.703 Perrinetal , MPZ(1989) 57 

1.279 Karna eta l (1991) 59 

2.12 Pierce (1989) 60 

 A
ug

us
t 1

5,
 2

01
2 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e:
 M

ay
 5

, 1
99

6 
| d

oi
: 1

0.
10

21
/b

k-
19

96
-0

62
8.

ch
00

5

In Nonlinear Optical Materials; Karna, S., et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1996. 



5. HAMEKA Third-Order Nonlinear Electric Susceptibilities 111 

various contributions. It is therefore much harder to calculate reliable y values than, for 
example, linear polarizabilities a or even nonlinear second-order polarizabilities p. 

It is well known that the actual excited molecular eigenstates K , L , M occurring in 
the perturbation expansions are usually linear combinations of single-determinant S C F 
singly and doubly excited eigenstates. Reliable theoretical y values require therefore 
configuration interaction procedures in order to predict the correct molecular eigenstates 
K , L and M . Since the P P P eigenstates are obtained by means of a C I procedure the 
method should lead to more accurate y values than the extended Huckel method even 
though the P P P method depends on some semiempirical parameters. 

At first sight it may seem that our theoretical y value reported in Table m is exactly 
equal to Shelton's experimental value y = 0.98 x 10~ 3 6 esu (50) but this is not the case 
since our result refers to the n electron contribution only while Shelton's result refers to 
the total value. We should add the a and the G-n interaction to our theoretical values. 
If we take the extended Huckel value of 0.155 x 10~ 3 6 esu for the sum of the two 
contributions then we predict a total y value of y = 1.133 x 10~ 3 6 esu by combining the 
P P P result for the n contribution and the extended Huckel result for the o and G-n 
interaction contributions. It is interesting to note that Shelton's experimental value 
y = 0.98 ± 0.12 is just between the extended Huckel value y = 0.86 and the P P P value 
y= 1.13. 

It may be concluded from the numerical values in Table II that it is not particularly 
easy to calculate y since it involves a large number of singly and doubly excited states 
and since it is a difference of various contributions. W e list a variety of recent 
theoretical results in Table III and the accuracy of the various results is surprisingly 
good. 

Three of the results in Table I V were derived by means of numerical methods 
where finite electric fields are introduced and the various polarizabilities are derived by 
numerical differentiation of the energy or the induced dipole moment We have reduced 
all results to the same units, 10~ 3 6 esu. The first calculation by Schweig (51) does not 
mention any result for E 0 ( X 2 Y 2 ) but his reported value for E Q ( X 4 ) = E 0 ( Y 4 ) is in 
rough agreement with our results. The work by Kurtz, Stewart and Dieter (24) is 
based on a numerical extension of the semiempirical M O P A C program (23). Another 
calculation, reported by Waite, Papadopolis and Nicolaides (56) is also based on a 
semiempirical approach, a C N D O / 2 method enhanced by some empirical parameters. A 
more recent calculation by Perrin, Prasad, Mougenot and Dupuis (57) reports two y 

values, y = 1.279 derived from an S C F calculation and a second value y = 1.703 
derived from an M P 2 computation (58). 

Two recent studies attempt to predict the frequency dependence of the y in benzene 
order to compare it with experimental results. Both also report the static value for zero 
frequency. The value y = 1.279 reported by Karna, Talapatra and Prasad (59) is 
consistent with the previously reported S C F value (57). Pierce (60) reports a static 
polarizability value y = 2.12 which is significantly higher than any of the others. 
Pierce's n electron contribution y = 0.74 is not very different from our extended Huckel 
value yn = 0.70 (53) but Pierce's o electron contribution is much higher than anybody 
else's and this causes his total value to be quite high. It should be noted also that Pierce 
does not report a K-G interaction contribution. 

W e mentioned already that the various authors have used a variety of units in 
reporting y values, we converted all values to 10" 3 6 esu units. It should be noted that 
Waite (56) misquoted our PPP result (54) in his paper. 
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We concluded from Table III that most recent theoretical results agree reasonably 
well with experiment. The various numerical approaches give satisfactory results. We 
prefer the P P P approach because it contains configuration interaction and it allows us to 
substitute the proper molecular eigenstates with accurate excitation energies into the 
perturbation expansions. 

V . Applications to Other Aromatic Molecules 

The theoretical work on benzene was motivated by the desire to derive a suitable and 
practical theoretical procedure for y that yields results of acceptable accuracy. Both the 
theoretical and experimental work on other materials is focussed on the search for 
materials with substantially larger y values, which have the potential to be used in 
photonic devices. In this quest the interaction between theory and experiment is of 
primary importance. In an ideal case theoretical studies indicate the direction of 
experimental investigations and experimental results may stimulate more precise 
theoretical studies of promising molecules. 

It follows from general considerations that the presense of low-lying excited states 
gives rise to enhanced P and y values. Consequently there was reason to believe that 
large aromatic molecules might be worth investigating. It was also believed that the 
presence of amino, nitro or cyano substituents could enhance the P or y values. 

In 1977 Oudar, Chemla and Batifol (61) presented a systematic study of the P and 
y values of a group of mono- and disubstituted benzenes by simultaneous use of static-
field induced second harmonic generation and tunable four-wave mixing. The two 
experimental procedures measure slightly different quantities and their results are not 
quite consistent. Nevertheless the experiments clearly indicate that paranitroanaline is 
the molecule with the largest P or y values. 

Subsequently, Meredith, Buchalter and Hanzlik (62, 63) measured the third-order 
nonlinear susceptibilities of l iquids using third-harmonic generation. These 
measurements again indicated that paranitroanaline deserves special attention. 
Subsequent work on paranitroanaline only (64) showed that the results for P or y are 
strongly solvent dependent 

It is not surprising that paranitroanaline has been the subject of theoretical studies 
also. Karna and Prasad (65) presented an ab initio time-dependent coupled perturbed 
Hartree-Fock study of p-nitroanaline. The result of the calculation was somewhat 
disappointing, whereas Oudar and Chemla (66) had previously reported a value of y = 
48 x 1 0 - 3 6 esu and Perr in and Prasad (67) had measured a value of 
y = 18 x 10" 3 6 , the calculations predicted a much lower value y = 1.48 x 1 0 - 3 6 esu. 

We should note that we have had similar experiences. We investigated a group of 
about forty nitrogen-containing aromatics with the relatively crude Huckel method (68). 
Our calculations indicated that two of the molecules we investigated might have 
exceptionally larger y values, namely 7,7, 8, 8-tetracyanoquinodimethane (TCNQ) and 
2, 2, 6, 6,-tetracyanonaphtoquinodimethane. Our theoretical predictions led Meredith 
and Buchalter (69) to measure y for T C N Q . They found that the y value for T C N Q is 
less than 26 times the benzene value whereas we had predicted a ratio in excess of 
1000. This experience shows that theory has its limitations in predicting y values. 
However, even though theory's numerical prediction for large molecules are not 
particularly accurate, theory can offer some guidelines for the experimentalists. Our 
numerical predictions for T C N Q were off by a factor 40 but our prediction that the y 
value for T C N Q was much larger than for other molecules was still valid. 
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Another group of molecules that has recently attracted attention are thiophene, its 
derivatives and its polymers. Experimental results on various thiophene chains from 
monomers to hexamers were presented by Zhao, Singh and Prasad (72). The linear 
polarizabilities of these molecules were computed by Champagne, Mosley and Andre* 
(71). The nonlinear susceptibilities y were evaluated by Karna et al (72), again with the 
ab initio time-dependent Hartree-Forck method. 

We have encountered a number of studies on smaller molecules, for example water 
(73) and carbon dioxide (74) but we do not intend to review this aspect of the theory. 

V I . Concluding Remarks 

We may conclude that the theoretical studies of the third-order nonlinear susceptibilities 
y of conjugated and aromatic molecules were motivated by two different reasons. First, 
it was hoped that the reseach might lead to the identification of materials with enhanced 
y values which might find applications in light wave communication systems. Initially 
it appeared that the E F I S H effect might find applications in the construction of 
modulator devices. Second, the calculation of values for large molecules constituted an 
interesting and challenging theoretical problem in quantum chemistry. For the first time 
in history a branch of quantum chemistry depended on the evaluation of a fourth-order 
energy perturbation. 

It is unfortunate that practical applications of the E F I S H effect never materialized in 
a major way. The extensive search never led to the identification of materials with y 
values sufficiently large to be of practical use. Also , alternative modulator devices, 
based on different mechanisms were developed. O f course, the evaluation of y still 
remains an interesting theoretical problem which awaits new developments beyond the 
P P P level of approximation. We anticipate that future efforts to improve the accuracy 
of the theoretical results wi l l attempt to incorporate configuration interaction methods in 
the theoretical approaches. However, the size-inconsistency of C I beyond the singles 
level is a serious problem which may prevent the incorporation of C I for some time to 
come. This is especially true since materials with very large y w i l l l ikely be larger 
molecules such as polymers where size-inconsistency is especially problematic. We 
can only speculate about the directions of future improvements in the theory but is is 
safe to assume that they wi l l materialize one way or another. 
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Chapter 6 

Effect of Higher Excited Configurations 
on the Linear and Nonlinear Optical 

Properties of Organic Molecules 

Israel D. L. Albert, Tobin J. Marks, and Mark A. Ratner 

Department of Chemistry and Materials Research Center, Northwestern 
University, Evanston, IL 60208-3113 

Using the INDO/1 Hamiltonian and a set of configuration interaction (CI) 
calculations the order of which ranges from singly excited (SCI) to full CI, we 
demonstrate the importance of higher excited configurations on the linear and 
nonlinear optical (NLO) properties of two archetypical organic π-conjugated 
systems. The inclusion of higher excited configurations affects, both qualitatively 
and quantitatively, the electronic spectrum and the NLO response properties of 
these systems. It is shown that configurations at least at the level of singles and 
doubles are essential in obtaining reliable electronic and NLO properties of these 
chromophores. However, as the standard INDO/1 parametrization is based on a 
SCI level, the parameters used in higher order CI must be modified to obtain 
reliable properties. In this study we have found that by using a reduced value of 
the two-electron repulsion integral one can obtain reliable values of the linear and 
NLO response properties. 

I. Introduction 

Organic molecules and macromolecules having extended πconjugation are 
known to exhibit large nonlinear optical (NLO) responses1"5 since the delocalized 
7C-electrons in these systems are readily polarized (distorted from their equilibrium 
position) by the application of an electric field. In addition to the large NLO 
responses, these structures also exhibit a wide variety of interesting properties that 
have attracted the attention of chemists, physicists, and biologists. For example, 
on excitation these molecules undergo a variety of photochemical reactions that 
are of importance in biological systems. As examples, we cite the mechanisms 
of photosynthesis in plants and vision in animals6. Such molecules and 
macromolecules are also known to exhibit electrical conductivity properties that 
rival those of Cu7. Although there are no current examples of molecules 
exhibiting room temperature superconducting properties, rc-conjugated (BETD-

0097-6156/96/0628-0116$15.00/0 
© 1996 American Chemical Society 
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T T F ) 2 X salts are known to exhibit superconducting properties at lower 
temperatures8. The possibility of a ferromagnetic ordering in such compounds 
has also been of recent interest9. 

For a satisfactory understanding of the electronic and optical properties of 
organic 7C-conjugated systems, a detailed knowledge of the electronic states is a 
prerequisite. There have been a number of reports on the quantum chemical 
description of the electronic states of these structures and their relation to chemical 
and physical properties 1 0" 1 2. The major outcome of these studies is the clear 
demonstration of strong electron correlations in these systems. Some of the 
manifest properties are the existence of optically forbidden states below the 
optically allowed states in finite polyenes 1 3, negative spin densities at even 
numbered carbon sites in neutral polyene radicals, etc 1 4. It is clear then that 
correlations must be properly accounted for in modelling chromophores for N L O 
applications and for understanding the origin of large N L O responses frequently 
observed in these systems. 

In any semi-empirical quantum theory 1 5, such as the Pariser-Parr-Pople 
(PPP), complete-neglect of differential overlap ( C N D O ) , or intermediate neglect 
of differential overlap (INDO) approximations, the parameters describing the 
model can be tuned to reproduce experimental observables such as heat of 
formation, excitation energy etc.. This adjustment of the parameters is equivalent 
to introducing some electron correlation in the model. In order to exemplify this 
point we describe below the P P P hamiltonian in the second-quantized notation, 

HPPP - E £ A + E ' . t e X l a + h-C-) 
(1) 

+ E Vfifflt-m + E W^(n.-z,.)(n.-z.)/2 
i iV 

where a ^ a ^ creates (annihilates) an electron with spin a in the 1th atomic orbital, 
<t>i, Ej is the site energy (Huckel a) of the i * site, is the nearest neighbor 
transfer integral (Huckel P), U i (V 0 ) is the on-site, or Hubbard, repulsion 
associated with doubly filled and V(R) , the coulomb interactions of electrons 
at two different sites, fa and fa, is usually interpolated between U at R=0 and e 2 /R 
at R -> <*>. In the above Hamiltonian i f the on-site repulsion integral, U , and the 
intersite repulsion integral, V , are set to zero one obtains an uncorrelated Huckel 
Hamiltonian. On-site correlations can be included by tuning the on-site repulsion 
integral, U to obtain the Hubbard Hamiltonian; when intersite repulsion is also 
introduced one obtains the P P P Hamiltonian. Thus by tuning the parameters of 
the P P P model Hamiltonian one can introduce some amount of correlations. 
However it should be noted that in the above process we have not taken into 
account the dynamic electron correlations which can be introduced explicitly using 
one of the methods described in the next section. A treatment that introduces 
correlations explicitly through configuration interaction is found to be necessary 
to account for the properties of the excited states such as those described in the 
previous paragraph 1 0" 1 2. Models including electron correlations produce results that 
are markedly different from those that do not For example, the sign of the T H G 
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coefficient of unsubstituted polyenes computed from an uncorrected model is 
opposite to that computed from a correlated model 1 0 " 1 2 , 1 6 . The ordering of the 
electronic low-lying electronic states from a correlated model is opposite to that 
from an uncorrelated model. Thus, a proper account of electron correlations is an 
absolute prerequisite for accurately computing the N L O properties of organic 
conjugated systems. 

In this chapter we propose a method of including correlations through C I 
calculations that include configurations higher than singly excited configurations 
and we analyze the effect of these higher excited configurations on the linear and 
N L O response properties of two typical organic chromophores, namely para-
nitroaniline (pNA) and l,3,5,7-/ra/ts-octatetraene (fra/w-octatetraene). These two 
molecules are representative of broad classes of chromophores which exhibit large 
second and third order nonlinearities. These two chromophores are also chosen 
because there is a substantial database of experimental and theoretical results on 
electronic and optical properties available for comparison. In the next section, we 
briefly outline the method of performing C I calculations that include 
configurations of any arbitrary level of excitation using the INDO/1 Hamiltonian. 
In Section III we present the results of our calculations on the linear and N L O 
properties of these two archetypical chromophoric systems. 
II. Computational Methodology 

Major approaches for treating electron correlations include: (1) the 
perturbation theoretical approach; (2) the configuration interaction approach; and 
(3) the coupled-cluster method. A number of excellent treatises can be found in 
literature which describe these three approaches. W e briefly outiine the first two 
approaches and give more details on the proposed method 1 7 . Most of the 
perturbation theory that is utilized today for electronic structure calculations is of 
the M0ller-Plesset (MPPT) type or of the Nesbet-Epstein type. The former is 
characterized by a zeroth-order Hamiltonian which is the sum of effective one-
particle operators, such as the Fock operator, and from Bri l louin 's theorem the 
perturbation contains only bielectronic coulombic and exchange integrals. The 
Nesbet-Epstein theory is based on the partitioning of the C I matrix. The zeroth-
order Hamiltonian in this case is characterized by the diagonal of the C I matrix. 
Although the M P P T approach is size-consistent in every order, it is not convergent 
for al l values of the model parameters and hence, the infinite summation is usually 
truncated to any arbitrary order. The most commonly used procedures are the 
second (MP2) and the fourth (MP4) order perturbation corrections. Despite the 
size-consistency of the M P P T approach, the C I method is more commonly used 
to treat electron correlations, especially in semi-empirical methods, as it is 
variational and conceptually simple. In the C I method, N-electron states are 
expanded in terms of a basis set of al l possible N-electron Slater determinants of 
al l possible excitation orders, and the coefficients of the expansion are determined 
variationally. This procedure is called the ful l C I calculation and a C I calculation 
is size consistent only when such a calculation is performed. However, F C I 
calculations are not feasible even for moderately sized molecular systems as the 
number of configurations is enormous, and usually the C I expansion is truncated 
to an arbitrary level of excitation; singly excited (SCI) and singly and doubly 
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6. ALBERT E T A L . Linear & NLO Properties of Organic Molecules 119 

excited (SDCI) C I calculations being the most common. Both these methods have 
been applied to estimate the N L O responses of organic ^-conjugated systems, the 
former being successful only in estimating the first hyperpolarizability of donor-
acceptor systems 1 8 , 1 9 . Whatever the order of the C I calculation, it is important to 
obtain a spin-symmetry adapted linear combination of the configurations so as to 
conserve the total spin and hence utilize the spin invariance of the Hamiltonian. 
This exploitation of the spin invariance reduces both the cpu times and the 
storage requirements in large scale computations and gives more easily interpreted 
results. Table I shows the advantage of a spin-symmetry adapted basis over the 
N-electronic Slater determinant in a ful l C I calculation. 

A number of methods exist in the literature for generating spin-symmetry 
adapted basis sets 2 0. These include, for example, the explicit diagonalization of 
the S 2 (total spin) operator 2 0, the Lowdin projection operator technique 2 0, the 
symmetry group 2 1 and the unitary group approaches 2 2 and the Rumer spin pairing 
approach 2 3. O f a l l the above procedures, we have chosen the Rumer spin pairing 
method or valence bond (VB) method as it is chemically intuitive and has been 
extensively used in many quantum chemical calculations. The next subsection 
briefly outlines the Rumer spin pairing method for generating spin-symmetry 
adapted basis. 
A. Rumer Spin Pairing Method for Spin Symmetry Adaptation 

Given a number of orbitals N (atomic or molecular), electrons N e , and the 
spin S, one can generate al l possible linearly independent Rumer diagrams li> 
following the Rumer-Pauling rules 2 3 . In a Rumer diagram a " X " represents a 
doubly occupied orbital, a "." represents an empty orbital and a line between 
orbitals i and j represents a covalent bond between the two orbitals. The diagrams 
can be represented by an integer by associating two bits per orbital. For example 
a " X " is represented by the binary number "11", a "." by "00", a line beginning 
by "10" and a line ending by "01". Thus each of the Rumer diagrams can be 
generated and stored as positive integers \ < 2W. In order to generate the linearly 
independent set of Rumer diagrams, we start with the lowest integer diagram, a 
diagram in which al l the N y 2 orbitals to the right are doubly occupied (the H F 
ground state in which al l orbitals below the H O M O are doubly occupied), and 
systematically shift the bits to the left and check the validity of the diagram thus 
formed. The bit shifting is continued until the highest integer diagram, a diagram 
in which al l the (N-N./2) orbitals to the left are doubly occupied (all highest-
energy orbitals) is reached. This procedure is extremely rapid. For example, the 
generation 226512 singlet diagrams in a F C I with 12 electrons and 12 orbitals 
requires less than a minute on a I B M RISC/6000-560 machine. 

One of the drawbacks of Rumer C I procedure is that it is a non-orthogonal 
basis set and one has to obtain the overlap between the Rumer functions. This is 
done using the Pauling Island counting scheme 2 3 which uses the charge 
orthogonality of the Rumer functions. In this procedure, a nonvanishing S y 

requires two Rumer diagrams to have an identical occupancy in each orbital. For 
example, Rumer diagrams with one electron in al l the orbitals (a purely covalent 
diagram in the V B representation) are orthogonal to any diagram which has more 
than one electron in any of the orbitals, and diagrams with al l the orbitals doubly 
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occupied or those with only two orbitals singly occupied are orthogonal to al l 
others. Thus by this procedure, instead of calculating a 226512 dimensional 
overlap matrix for a F C I calculation involving 12 orbitals and 12 electrons, we 
need to calculate only one 132, one 42, one 14, one 5 and one 2 dimensional 
submatrices. 

Once a set of orthonormal basis is obtained, the C I matrix can be set up 
using the formulae for matrix elements of spin-independent operators between 
Rumer diagrams given by Cooper and M c Weeny 2 4 and by Sutcliffe 2 5 . However, 
as mentioned earlier, a F C I calculation is feasible only for smaller systems with 
minimal basis set. One way to overcome this limitation is by choosing an active 
subspace of a particular symmetry and to perform a F C I calculation within that 
subspace. Since most molecules used in N L O applications are conjugated n-
systems, one is prompted to choose an active space formed by orbitals with n-
symmetry. This is further supported by the success of 7C-electron theories such as 
the Pariser-Parr-Pople models in describing the linear and N L O properties of 
various 7C-conjugated systems. In our calculations we first carry out a Hartree-
Fock calculation using the INDO/1 Hamiltonian, and from the INDO/1 ground 
state, the orbitals of 7C-symmetry are selected and C I calculations are performed 
within this subspace. The level of CI , ranging from singles only (SCI) to a 
quadruply excited (SDTQCI) calculation, is systematically varied to demonstrate 
the importance of higher excited configurations. For all C I levels beyond S C I the 
ground state is explicitly correlated. 

One of the major concerns of including higher excited configurations in a 
C I calculation within the framework of a semi-empirical method is the 
transferability of the parameters. The parameters in most semiempirical models 
are chosen based on an SCI level to match experiment. The ground state is not 
correlated in a SCI calculation. Thus by tuning the values of the parameters to 
reproduce an experimentally observed variable, usually the optical absorption 
maximum, one introduces some amount of electron correlation into the model 
Hamiltonian itself. Now when these parameters are used in an higher level study 
where correlations are explicitly included through CI , it would mean that electron 
correlations are in a sense double counted. In standard semiempirical models, the 
only parameters that can include electron correlations are the two-electron 
repulsion integrals. To remove the inherently built-in electron correlations used 
in the model one has to modify this two-electron integral. One might choose this 
to be equal to the value used in ab initio calculations. However, from our own 
previous experience and from other studies 1 6 we have chosen to use a value of 
10.33 eV instead of 11.11 eV used in the original INDO/1 Hamiltonian. It is 
interesting to note that a reduced value of 10.33 e V is also the value of the two-
eletron repulsion integral calculated by the uniformly-charged-sphere 
approximation with the assumption that the two electrons occupy different lobes 
of the p atomic orbital and their mutual repulsion is then given by (e 2 /4R 2 ) 1 5 . 
A n even lower value of 9.87 eV was suggested by Ju lg 2 6 who used the original 
approach of Pariser in which the two-eletron repulsion integral is calculated from 
the ionization potential and the electron affinity. In addition, he also made 
allowance for the changes in the size of the 2p z orbital with changes in the number 
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122 NONLINEAR OPTICAL MATERIALS 

of electrons in it and for the polarization of the core. A good description of the 
methods of calculating the two electron repulsion integral can be found in the 
book of Dewar 1 5 . The effect of this reduced two-electron repulsion integral on 
the linear and N L O properties w i l l also be studied. 
B. Methods of Computing N L O Properties 

There are a number of procedures to compute the N L O response properties 
of organic molecules. Some of the commonly used methods are the finite-field 
self-consistent field (FF-SCF) or coupled perturbed Hartree Fock (CPHF) 
method 2 7 , the sum-over-states (SOS) methods 2 8, the time dependent Hartree Fock 
(TDHF) method 2 9 , and the Correction Vector approach 1 1 1 6 3 0 . In the F F S C F 
method, an additional term equal to p.E, describing the interaction between an 
external electric field and the elementary charges constituting the molecule is 
added to the molecular Hamiltonian. A t the restricted Hartree-Fock (RHF) level, 
the one-electron orbitals are self-consistent eigenfunctions of a one-electron field-
dependent Fock operator, consisting of the field-free Fock operator h^r) and a 
field term: 

h(r) = hQ(r)-er-E (2) 

In the matrix representation of h(r), besides the usual integrals, one-electron 
moment integrals <plrlq>, the calculation of which is fairly standard, also appear. 
The solution of h(r) yields the field-dependent density matrices, energies, and 
dipole moments. The N L O properties are evaluated by taking the derivatives of 
the field-dependent dipole moments with respect to the applied electric field. This 
method has been used in computing the N L O response properties of molecules of 
widely varying size 3 1 . It should be noted that in this procedure, the entire S C F 
procedure and the C I calculation 3 2 must be performed at each value of the 
external electric field required in the differentiation scheme. This becomes 
computationally tedious and the differentiation procedure can be numerically 
unstable for second hyperpolarizability calculations 3 2. Moreover, the frequency 
dependence of the N L O coefficients cannot be taken into consideration in this 
procedure. 

The SOS method relies on a direct summation of the perturbation 
expression for the N L O properties (detailed expressions for the N L O coefficients 
to the fourth order can be found elsewhere) 2 8. In the general procedure, used 
mostly in the context of semi-empirical methods, one computes the approximate 
many-body electronic ground state (usually the H F ground state) of the molecule 
with an antisymmetrized product of one-electron eigenfunctions of the valence 
electrons. Correlations are accounted for within a limited C I scheme, usually S C I , 
that includes determinants formed by exciting electrons from occupied valence 
orbitals to unoccupied virtual orbitals. From the C I eigenfunctions and the 
eigenvalues, molecular N L O coefficients are evaluated using the SOS expressions. 
This is the most widely used method for computing frequency-dependent N L O 
responses and for analyzing the molecular origin of the large N L O responses of 
organic and organometallic chromophores within semi empirical approaches 3 3. 
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6. ALBERT E T A L . Linear & NLO Properties of Organic Molecules 123 

This procedure is usually very time consuming as one has to compute the 
transition moments between the various C I eigenstates, and the summation in the 
SOS expression must be carried out over al l the excited states. The summation 
is often truncated at an arbitrary number of low-lying excited states when a 
desired convergence in the computed N L O property is obtained. This procedure, 
however, is useful in determining the states contributing to the final value of the 
N L O coefficients and in interpreting experimentally observed values. 

In the correction vector approach, one computes the first and second order 
correction vectors, <|>(1), <|>(2), defined by the equations (for details see refs. 16 and 
30) 

( / / - ^ ^ c o ^ / H ^ H ) «P,|G» (3) 

where E G is the ground state energy after C I , the 0)'s are the excitation 
frequencies, p is the dipole displacement operator and T is the average lifetime 
of the excited states. Equations 2 and 3 can be solved by expanding the 
correction vectors in the basis of the configuration functions. Since the C I , the 
dipole, the overlap matrices, and the C I wavefunctions are also constructed in the 
basis of the configuration functions, the operator equations (2) and (3) can be cast 
into the following set of matrix equations by matching coefficients, 

E [ ^ - ( B o - l K O , - m F * = E G W - t e l P J G ^ (5) 
j j 

where ci{ and gj are the expansion coefficients of <|>(1) and IG>, and Sy are the 
C I and overlap matrices, and a is the coordinate axis of the dipole operator. 
Similar equations for the second order correction vector <|>(2) can also be generated. 
The above set of linear inhomogeneous equations is solved using the small matrix 
algorithm proposed by Ramasesha 3 4. Once the first and second order correction 
vectors are known, N L O coefficients up to third order can be readily written as 

a t f - <*J,,(a»)|pj,|G> + to|p.|4f(-a»» W 

" (8)-' | Vj |^(-«D)>/8 <7> 

where (p is the permutation operator implying the additional terms which are 
obtained when the coordinates and the frequencies are permuted. The 2nd 
hyperpolarizability y, in terms of the first and second order correction vectors 
and (fcj^, is written as 
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- (8)- l*?(-3o))|^|*2(-2^-a))> 

+ (C\2co,co)|uJ(t)f(-a))>+a)->-co] 

where CO —> -co indicates the same matrix elements with new arguments. This 
procedure of computing the N L O coefficients is extremely efficient. For example, 
the entire calculation of the polarizability, S H G , and T H G coefficients, at two 
different excitation energies of p N A , with all singles and doubles generated from 
an active space of 10 7C-orbitals with 12 rc-electrons spanning a 325 dimensional 
Hilbert space, requires less than 5 minutes on an I B M RISC/6000-560 workstation, 
i n . Results and Discussion 

The geometries of the molecules studied here were optimized using the 
A M I Hamiltonian in the M O P A C software package 3 5. The molecules are planar, 
and the coordinate system has been chosen so that the molecules lie on the x-y 
plane with the x-axis directed along the molecular backbone (long axis). In this 
configuration, the dominant components are oc^ for the polarizability, | i x x x for the 
S H G coefficient, and Y M X X for the T H G coefficient The electronic structure 
calculation involves a set of C I calculations the order of which ranges from S C I 
to F C I between a set of chosen active orbitals. In the case of SCI and S D C I 
calculations, a l l singly and doubly excited configurations between al l the n-
molecular orbitals, 8 orbitals for frans-octatetraene, and 10 in the case of p N A , 
were used in the C I calculation. In the case of higher order C I , the singles and 
doubles were the same as used in the SCI and S D C I calculations, and the higher 
excited configurations were generated between three H O M O ' s and three L U M O ' s . 
The two-electron integrals were parametrized using the Mataga-Nishimoto 
approximation 3 6 for the SCI calculations and the Ohno-Klopman approximation 3 7 

for al l other C I calculation. This choice of parametrization was based on our 
previous calculations of the N L O properties of organic molecules 1 6. 

Tables II and HI present the results of our calculations on the electronic 
and optical properties of frans-octatetraene and p N A , respectively. The Tables 
include the computed values of the excitation energies of the lowest dipole 
allowed states, the dominant components of the frequency dependent 
polarizability, as wel l as S H G and T H G coefficients at an excitation energy of 
0.65 eV. In the case of fraAtf-octatetraene, we also report the excitation energy 
of the two photon 2lAg state. A l l the above properties are examined as a function 
of increasing order of C I used in the calculation and at two different values of the 
two-electron repulsion integral. In the following paragraphs the results for the 
individual molecules are discussed. 
A . 7>a/t5-Octatetraene 

It can be seen from Table II that electron correlation at least at the level 
of S D C I is required to reproduce the experimentally observed order of the excited 
states, as concluded by several other studies 1 0" 1 2 , 1 6 . This is true for both values of 
the two-eletron repulsion integral. It is interesting to note that the excitation 
energy of the 1 1 B U state from the SCI calculation (4.29 and 4.57 e V from the two 
parametrizations) is remarkably close to the experimentally observed value of 4.40 
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e V 1 3 . This is because the INDO/1 Hamiltonian has been parametrized at the S C I 
level to reproduce the optical absorption spectra of organic molecules. The S C I 
calculation, does not however, reproduce the excitation energy of the two photon 
(2 J A g ) state. This is because, while the contribution of the singly excited 
configuration ( H O M O - > L U M O ) to the 1 1 B U state is 95%, the contribution of the 
singly excited configuration ( H O M O - 1 -> L U M O and H O M O -> L U M O + 1 ) to 
the 2 x A g is only 33%, and the major contribution (60%) comes from a doubly 
excited configuration ( H O M O , H O M O -> L U M O , L U M O ) . This is essentially 
why none of the SCI calculations reproduce the correct ordering of the 2 x A g and 
1*8. states 1 0 ' 1 6. 

Even though the S D C I calculation reproduces the correct ordering of the 
electronic states in frajw-octatetraene, the inclusion of higher excited 
configurations does quantitatively affect the linear and N L O response properties. 
W e see that configurations at least at the level of quadruples, beyond which there 

are no significant changes in the linear and N L O properties, are necessary to attain 
stability in the electronic and optical properties. This is true in both cases of 
parametrization used in this study. The effect of a reduced two-electron integral 
is to remove some amount of electron correlation that is inherently built into the 
INDO/1 Hamiltonian as described above. This reduction in the two-electron 
integral provides much better agreement with the experimentally observed 
excitation energies for higher order CI , as expected. Although there are no 
available experimental values of the frequency-dependent polarizability and T H G 
coefficient of fra/woctatetraene, results from ab initio calculation using 4-31G and 
semi-diffuse p and d basis function are available 3 8 . The dominant component of 
the frequency-dependent polarizability and the T H G coefficient at an excitation 
energy of 0.65 eV are given in Table II for comparison. A direct comparison of 
the results from ab initio and the correction vector calculations is impeded by the 
different conventions used in literature in defining the N L O coefficients 3 9. The 
difference in the conventions used in the perturbative correction vector approach 
and in the Taylor series based C P H F method can be easily understood by writing 
the energy expansion from the two methods. The Taylor series expansion of the 
energy in the presence of a electric field can be written as 

and the corresponding perturbation expansion of the energy can be written as 

Comparing the two equations we see that the N L O coefficients from the correction 
vector method differs from those from the ab initio results in the Taylor expansion 
coefficients. Thus for example the polarizability from the correction vector 
approach is half that from the ab initio calculated polarizability and the T H G 
coefficient differs by a factor of 24. A comparison of the two results, after taking 
into account the difference in the convension, shows that while the polarizability 
from the two approaches is in excellent agreement the T H G coefficients differs 

(9) 

(10) 
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by a larger extent. Such a difference in the T H G coefficients computed from 
semi-empirical and ab initio methods have been reported earlier on the smaller 
homologue 1,3,5-hexatriene. However the available experimental results for the 
smaller homologue was supportive of the results obtained from the semi-empirical 
C N D O method. It is also known that the higher order N L O coefficients from ab 
initio-TDHF or C P H F calculations are always too small compared to the 
experimental value. 
B. Para-Nitroaniline 

In contrast to frajw-octatetraene, we see that the change in electronic and 
optical properties are minimal after the S D C I level, although some changes in the 
S H G and T H G coefficients are observed when going from the S D C I to the S D T C I 
level. The overall agreement of the computed linear and N L O properties of pNA 
at the S D T C I level with the experimentally observed properties is good (Table 
III). It should be noted that even though the literature experimental value 4 0 of the 
vector component of the S H G coefficient is 9.2 10" 3 0 esu, it must be multiplied by 
0.58 to account for the recent change in the d 3 3 value of the quartz 4 1 . This yields 
a value 5.34 1 0 3 0 esu which is in excellent agreement with our computed value 
of 5.42 10" 3 0 esu at the S D T C I level. There are also a few ab initio calculated 
N L O response properties of p N A available in literature 4 2. A comparison, after 
accounting for the difference in the two convensions, of the I N D O N L O response 
properties of p N A with the ab initio results is in general poor, despite the good 
agreement between the I N D O and experimental results. However it is known that 
the ab initio-TDHF results of P and y are always too small compared to 
experiment 4 3. This has been attributed to the neglect of electron correlations in 
the ab initio calculations. This is further supported by the fact the M P 2 calculated 
(3vec is about twice that from the H F value 4 4 . Our polarizability value, however 
appears to be somewhat overestimated. Again we see that a reduced value of the 
two-electron integral yields much better agreement with the experimentally 
observed linear and N L O properties for higher order CI calculations. 
I l l Conclusions 

Using a set of C I calculations that include configurations of varying levels 
of excitations, ranging from singles to F C I , in this chapter, we have demonstrated 
the importance of the higher excited configurations in describing the linear and 
N L O properties of two archetypical 7C-conjugated chromophores. We find that 
configurations at least at the level of double excitation are important i n accurately 
reproducing the electronic and optical properties of organic 7C-conjugated 
molecules, both qualitatively and quantitatively. However, when correlations are 
explicitly included through C I calculations, the two-electron integrals, which are 
parametrized at the SCI level, must be reparametrized to remove the inherently 
built-in electron correlations in a semi-empirical model Hamiltonian. W e find that 
a reduced value of the two-eletron repulsion integral gives good agreement with 
experimentally observed linear and N L O response properties. A similar 
conclusion was arrived at by Prasad and Karna from a I N D O / S C I and I N D O / S D C I 
calculation of the N L O response properties of N T E (l-nitro-2-thiophene-ethylene) 
and N T B (l-nitro-4-thiophene-butadiene) 4 3. These authors have concluded that, 
an extended set of basis functions capable of describing the valence and diffuse 
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states in the semi-empirical formalism and also including larger C I space with 
higher excited configurations, which were absent t i l l very recendy, are essential. 

We and a number of other groups have studied the P-response properties 
of organic and organometallic chromophores as wel l as molecular clusters using 
appropriate P P P or INDO/S Hamiltonians, with the SOS method including only 
singly-excited configurations. For a wide variety of chromophores exhibiting 
fairly large P-responses this method works wel l and it serves as a very useful 
correlative, interpretive, and predictive tool; for molecules with only weak N L O 
response, or for the weaker tensor components of p, it fails badly. This is the 
expected behavior since accurate representation of weak response requires both 
basis set and correlation treatment wel l beyond the SOS-SCI semi-empirical level. 

In the present contribution we have shown that when more complete 
treatments of C I are included, appropriate semi-empirical models can yield linear 
and N L O responses that are essentially quantitative (at least in the favorable cases 
analyzed here). Thus appropriate semi-empirical electronic structure models 
treated with suitable levels of correlations can yield useful interpretations of the 
response of 7C-electron species at either a semi-quantitative (SCI) or quantitative 
(SDTCI) level. 
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Chapter 7 

Frequency-Dependent Polarizabilities 
and Hyperpolarizabilities of Polyenes 

Prakashan Korambath 1 and Henry A. Kurtz 

Department of Chemistry, University of Memphis, Memphis, T N 38152 

Polarizabilities (α) and second hyperpolarizabilities (γ) as a function of 
frequency are calculated for a series of polyenes, H(C 2 H 2 ) n H with n 
ranging from 2 to 20, by the TDHF method with AM1 parameterization. 
For the second hyperpolarizabilities, third harmonic generation, electric-
field induced second harmonic generation, and intensity dependent 
refractive index quantities are calculated. The frequency dependencies 
are discussed and comparisons made amongst the different γ values. The 
saturation behavior of these quantities is also examined and limiting 
values for α and γ per subunit are computed. 

Several computational studies have been done to explore the behavior o f the 
nonlinear optical properties of polyenes as the length increases. Many early papers 
used a power-law expression (anb) to fit the polarizability and hyperpolarizability 
(1,2). Such a power-law behavior with a constant exponent is not adequate to 
describe the limiting behavior o f polyenes. Both experimental (3) and theoretical (4) 
evidence have shown that the polarizability and second hyperpolarizability approach 
linearity with large numbers o f subunits, i.e. the exponent approaches unity. The 
behavior is usually indicated by examining the value/subunit -- which approaches a 
constant at large n. Almost all previous theoretical work examined only the static 
values o f the polarizability and second hyperpolarizability. The goal of this study is to 
examine the behavior of the frequency dependent quantities. 

1Current address: Department of Chemistry, Ohio State University, Columbus, OH 43210 

0097-6156/96/0628-0133$15.00/0 
© 1996 American Chemical Society 
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Method 

Each H ( C 2 H 2 ) n H oliogmer, for n = 1 to 20, was first fully optimized using the A M I 
(5) parameter set and then the properties calculated. The frequency dependent optical 
properties were calculated using the T D H F (6,7) method which has been implemented 
by us in both M O P A C (8) and G A M E S S (9). The properties o f interest are the 
polarizability (a), first hyperpolarizability (P), and second hyperpolarizability (y). 
These quantities can be defined from a series expansion of the response of a system to 
an external electric field (F) as 

E ( F ) = E ( 0 ) - 2 : H i F i - ^ 2 > « F i F i - ^ I P V W - 1 2 r S H F i F j F k F I - • ( 1 ) 

i Z ! i.j J ! i.j.k H ! i,j,k,l 

where the indices i , j , k, and 1 run over the Cartesian components (x, y, and z). One or 
more o f the external fields are usually frequency dependent (i.e. lasers) and each 
combination of different fields leads to slightly different values for the coefficients in 
Equation 1. This leads to a classification of the different optical properties o f interest 
which correspond to different experimental situations. The quantities calculated by 
our programs are listed in Table I. 

For a detailed definition of this quantities, see a text book on nonlinear optics 
such as the one by Boyd (10). 

Table I. Quantities Calculated by M O P A C and G A M E S S 
Polarizability: 

a(-©;©) Frequency Dependent Polarizability 

First Hyperpolarizabilities: 
P(-2CQ;(Q,(D) Second Harmonic Generation (SHG) 
p(-©;©,0) Electroptic Pockels Effect (EOPE) 
P(0;©,-©) Optical Rectification (OR) 

Second Hyperpolarizabilities: 
y(-3©;©,©,©) Third Harmonic Generation (THG) 
y(-2©;©,©,0) Electric Field Induced Second Harmonic (EFISH) 
y(-©;©,©,-©) Intensity Dependent Refractive Index (IDRI) 

or Degenerate Four-Wave Mixing ( D F W M ) 
y(-©;©,0,0) Optical Kerr Effect ( O K E ) 

The programs automatically provide all components o f a , P, and most o f y in 
whatever molecular coordinate system the molecule was input. In order to provide a 
comparison with other work and to provide a unique set o f data, we present our 
results as "averaged" values according to the following definitions. 

CL = —(<x + a +a ^ 
3 V « ^ y y ^ 7 , 2 \ 
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7. KORAMBATH & KURTZ Polarizabilities & Hyperpolarizabilities of Polyenes 135 

y t- JYxxxx Y yyyy Y zzzz ^ Y xxyy + Y yyzz V yyzz ) | 
(3) 

y , ™ = ^ { 3 ( y _ + y > J f y + y _ ) 

^(Y xxyy Y xxzz Y yyzz Y yyxx Y zzxx Y zzyy ) 

+ ( Y x y y x + Y x = * +Yyxxy + Y y a y + Y z x x z + Y J y y z ) } ( 4 ) 

Y r o R I = — ( 3 ( V + Y + V ) ' |^ xxxx « yyyy ' zzzz/ 

^(Y xyxy Y xzxz Y yzyz Y yxyx Y zxzx Y zyzy ) 

(Y xxyy Y xxzz Y yyzz Y zzxx Y zzxx Y zzyy ) } 

Values o f the first hyperpolarizability (p) wil l not be reported in this work as they are 
all near or equal to zero. Molecules must have an asymmetry in their electronic 
distributions to exhibit P or a dipole moment (n). 

For large oligomers, the above averages are always dominated by a single 
component along the molecular axis, i.e. or Yxxxx> m & other works often only 
report these components. In the limit when all other components can be ignored,our 
values can be related to the others by a = 1/2 and y = 1/5 Yxxxx-

Polarizability 

A plot o f the calculated a(-co;G)) versus co for each oligomer is given in Figure 1. 
These results show the following general trends — 1) for a given oligomer a increases 
(slowly at first and then more rapidly) until a pole (infinity) is reached which 
corresponds to an excitation energy; 2) at a given frequency, as the oligomer length 
increases, a increases; and 3) as the oligomer length increases, the excitation energy 
moves lower. The lowering excitation energies approach a limiting value 
corresponding to the band gap of the ideal polyacetylene polymer. From A M I 
optimized structures this value is approximately 2.0 eV and is in reasonable agreement 
with the experimental values (11). The main reason for this agreement is the very 
good geometries provided by the A M I parameterization for these systems. Bredas 
and co-workers (12) have shown that the optical properties o f these conjugated 
systems are very sensitive to the bond alternation and the A M I parameterization 
works very well for polyenes. 

In order to demonstrate the saturation effect for a , it is more convenient to 
look at the value per subunit, shown in Figure 2. In our work, this quantity is defined 
as ct/sub(n) = a(n) - a (n- l ) . It is often defined by other workers as a(n)/n. These 
definitions are identical in the limit of very large n but the incremental definition used 
here shows more rapid convergence to the limiting value and is a better approximation 
to the appropriate numerical derivative. A l l the curves for frequencies below the 
lowest limiting excitation energy are clearly approaching a constant at large n. A l l the 
curves for frequencies above the excitation energy diverge as n increases. 
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136 NONLINEAR OPTICAL MATERIALS 

0 1 2 3 4 5 

Energy (eV) 

Figure 1. Calculated polarizabilities as a function of photon energy 
(frequency) for polyene oligomers H ( C 2 H 2 ) n H with n from 2 (lowest 
curve) to 21 (highest curve). 
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7. KORAMBATH & KURTZ Polarizabilities & Hyperpolarizabilities of Polyenes 137 

For the below excitation energy curves, the limiting a/sub values have been 
estimated by others by fitting log(oc/sub), or ct/sub, to a polynomial in 1/n (13,14), 

a s b e d 
v — ^ ) = a + - + — 
subunit n n 1 < ^ - L . - J = a + 7 + " 7 + " 7 ' <6> 

The log(a/sub) is often used instead of a/sub to provide a better function for 
extrapolation which is a tenuous operation at best. The limiting value of a/sub is 
obtained from equation 6 as 10 a . With the data for our oligomers, this fitting 
procedure often lead to negative values for some of the parameters which results in a 
function that has maxima prior to infinite n. In order to use a function that increases 
monatonicaly, in this work, we have chosen the following function for extrapolation, 

log(a /sub) = a - b e " c n d ( 7 ) 

The limiting value is given by the 10 a . This function works very well for extrapolation 
of the quantities o f interest here. In our fits, the sum of the squares o f the errors is 
always below 10'^. 

Our estimates of the limiting a/sub are given in Table II. This data was 
generated by fitting Equation 7 to the last 9 points (n= l l to 20). Nine points were 
chosen to be 2*(number of parameters) + 1. Fits were also done with more and less 
points and the results did not differ significantly from those from 9 points. 

Table II: a/sub limiting values 
E(eV) a/sub limit E(eV) a/sub limit 
0.00 54.2 1.25 72.7 
0.25 55.1 1.50 87.4 
0.50 57.3 1.75 114.5 
0.625 57.8 1.875 139.9 
0.75 59.5 2.00 183.7 
1.00 64.5 

The static limiting value of 54.23 a.u. is in good agreement with the value of 
60.8 a.u. estimated from ab initio oligomer calculations done by Hurst, Dupuis, and 
Clementi (13). 

Second Hyperpolarizability 

The second hyperpolarizability results for each frequency (in eV) as a function of 
oligomer length n are given in Tables III, IV , and V , for T H G , E F I S H , and IDRI, 
respectively, and are illustrated in Figure 3. It is clear from these plots that the results 
follow the expected behavior with poles for T H G at 1/3 the excitation energy obtained 
from the a calculation and E F I S H and IDRI at 1/2 the excitation energy. B y 
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138 NONLINEAR OPTICAL MATERIALS 

Table III: Calculated v T H G Values 
E(eV): 0.00 0.25 0.50 0.625 0.75 0.875 
2 3704 3852 4352 4795 5436 6380 
3 26391 27844 33008 37897 45557 58254 
4 94731 101259 125511 150059 191855 271397 
5 239064 258515 333735 414822 565119 900499 
6 483812 528450.0 707383 911752 1323993 2428958 
7 842166 927784 1281988 1708294 2642510 5742108 
8 1316219 1460530 2074768 2849361 4689295 12560437 
9 1900402 2121978 3087187 4356889 7615949 
10 2583328 2899698 4306884 6228630 11541203 
11 3353187 3780737 5717298 8451881 16567715 
12 4196561 4749790 7295630 10999177 22758505 
13 5102918 5794772 9022930 13845804 
14 6060796 6902188 10876137 16956110 
15 7062249 8062643 12838582 20303083 
16 8099730 9267210 14893959 23858638 
17 9165937 10507022 17025068 27590078 
18 10256446 11776808 19221666 31477874 
19 11369500 13074378 21479006 35512237 
20 12498879 14392149 23781896 39661762 
21 13642596 15727718 26125031 43914425 
E(eV): 1.00 eV 1.25 eV 
2 7830 14757 
3 81753 
4 463192 
5 2115407 
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Table IV : Calculated y E F 1 S H Values 
Values Below Staturation Limit 

E(ev) 0.00 0.25 0.50 0.75 1.00 
2 3704 3777 4008 4444 5183 
3 26391 27102 29415 33959 422 
4 94731 97910 108444 130040 172658 
5 239064 248494 280262 347979 491882 
6 483812 505367 579056 741680 1112060 
7 842166 883368 1026023 1350587 2138337 
8 1316219 1385506 1628060 2194740 3651934 
9 1900398 2006436 2381175 3277113 5705218 
10 2583322 2734392 3272610 4585419 8315876 
11 3353197 3556971 4288018 6102561 11484165 
12 4196552 4459798 5409912 7804249 15184366 
13 5102918 5431659 6624320 9670176 19391636 
14 6060796 6460100 7915322 11675344 24059662 
15 7062249 7536499 9271726 13801598 29152576 
16 8099730 8652671 10682812 16031099 34630267 
17 9165937 9800580 12137798 18344920 40441425 
18 10256446 10975392 13630266 20731761 46555586 
19 11369500 12175175 15157445 23186355 52957275 
20 12498879 13393052 16710080 25691930 59592845 

Values Above Staturation Limit 
E(ev) 1.25 1.50 1.75 2.00 2.25 

2 6433 8686 13338 26179 124835 
3 58217 94173 21530 
4 266913 555681 
5 861864 2640526 
6 2228011 
7 4942092 
8 9832760 
9 18113460 
10 31593781 
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Table V : Calculated y 1 P R 1 Values 
Values Below Staturation Limit 

E(ev) 0.00 0.25 0.50 0.75 1.00 
2 3703 3752 3902 4174 4601 
3 26388 26860 28343 31069 35502 
4 94724 96826 103510 116051 137152 
5 239055 245274 265236 303422 369712 
6 483803 497994 543905 633225 792596 
7 842162 869246 957472 1131620 1449768 
8 1316219 1361709 1510752 1808582 2363776 
9 1900398 1969949 2198952 2661370 3538353 

10 2583322 2682328 3009690 3676596 4960114 
11 3353187 3486640 3929464 4838476 6610126 
12 4196552 4368846 4942318 6127196 8461616 
13 5102918 5317969 6035613 7526710 10492119 
14 6060796 6321886 7195155 9018426 12674050 
15 7062249 73722134 8411042 10589163 14987399 
16 8099730 8461005 9673850 12226269 17412566 
17 9165937 9580452 10974185 13916801 19928755 
18 10256446 10725899 12306475 15653110 22523673 
19 11369500 11895467 13668349 17431784 25191516 
20 12498879 13082482 15051787 19241705 27914031 

Values Above Staturation Limit 
E(eV) 1.25 1.50 1.75 2.00 2.25 

2 5247 6223 7732 10176 14445 
3 42523 53833 72966 
4 172273 232991 
5 485268 698942 
6 1082073 
7 2048684 
8 3441604 
9 5286551 

10 7577414 
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5 E 7 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 

Energy (eV) 

Figure 3. Calculated second hyperpolarizabilities ( T H G , E F I S H , and 
IDRI) as a function of photon energy (frequency). 
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Figure 4. y/sub as a function of the number of subunits, n, for different 
photon energies (frequencies). Lowest curve corresponds to the smallest 
oligomer and highest curve is the largest oligomer. 
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7. KORAMBATH & KURTZ Polarizabilities & Hyperpolarizabilities ofPolyenes 143 

comparing these plots, it can also be seen the y(THG) > y(EFISH) > y(IDRI) as noted 
by others (6). 

A s with the polarizability, the saturation behavior is demonstrated by 
examining y/sub (defined as y(n) - y(n-l)). Figure 4 shows the behavior of these 
values for the different types of y. In this figure are all the curves that show 
convergence with increasing length plus one curve to illustrate divergent behavior. 
The curves that show convergence are those with energies less than the appropriate 
pole for the infinite (polymer) system, i.e. 1/3 the band gap for T H G and 1/2 the band 
gap for E F I S H and IDRJ. A t 20 subunits (40 carbons) the y/subunit values do not 
show complete saturation. Those values at 0.0 eV are essentially converged n=20 but 
as the energy gets closer to the pole it is clear that the y/subunit converges for much 
larger systems (n>20). This, like other theoretical works, is not in accord with the 
recent experimental estimate that the static (0.0 eV) g does not show saturation until 
nearn=120(3 >l. 

The data shown in Figure 4 is used to find the limiting values of y/subunit by 
fits to equation 7 in the same manner as the polarizability fits. The limiting values 
obtained from y/sub values are much less reliable than a/sub as the data are much 
further from saturation. Data in Table VI I gives the results o f our extrapolation 
predictions, again using the last 9 points in each curve. 

Table V I : y/subunit limiting values 
Energy T H G E F I S H IDRI 
0.0 1.211 1.213 1.212 
0.25 1.411 1.304 1.274 
0.50 2.525 1.674 1.479 
0.625 4.880 
0.75 2.751 1.949 
1.00 8.275 3.001 

Conclusions 

These semiempirical calculations clearly show the proper saturation behavior of a and 
y for polyenes o f increasing length. These A M I results also agree quite well with the 
ab initio results (13) but further work needs to be done to understand the descrepancy 
with the experimental estimates. 
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Chapter 8 

Optical Properties from Density-Functional 
Theory 

Mark E . Casida, Christine Jamorski, Fréderic Bohr1, Jingang Guan, 
and Dennis R. Salahub 

Département de chimie, Université de Montréal, C.P. 6128, 
Succursale centre-ville, Montréal, Québec H3C 3J7, Canada 

Density-functional theory (DFT) is a promising method for the 
calculation of molecular optical properties, since it is less compu
tationally demanding than other ab initio methods, yet typically 
yields results of a quality comparable to or better than those from 
the Hartree-Fock approximation. The calculation of static molec
ular response properties via DFT has now been studied for several 
years, whereas work on the corresponding dynamic properties is 
only just beginning, since none of the previously existing molecular 
DFT codes were capable of treating them. The present article gives 
a brief summary of some of our work in this area. This includes an 
illustration of the quality of results that can be expected from DFT 
for static molecular response properties (dipole moments, polariz
abilities, and first hyperpolarizabilities), as well as illustrative early 
results (dynamic polarizabilities and excitation spectra) from our 
code deMon-DynaRho, the first molecular time-dependent density-
functional response theory program. 

The search for stable materials with enhanced nonlinear optical properties for use 
in telecommunications and computer information transmission and storage has 
spurred a renewed [1,2] interest by chemists in recent years [3-7] in the nonlinear 
optical properties of molecules. It is hoped that quantum chemical calculations 
wi l l help in the design and preselection of candidate materials. However, several 
requirements wi l l have to be met if the results of quantum chemical calculations 
are to find direct application to problems currently of interest in materials science. 
These requirements include the ability to handle some reasonably large molecules, 
the abil ity to treat the response to a dynamic field, and proper consideration of 

1Current address: Laboratoire de Chimie Physique, Université de Reims, Faculté 
des Sciences, Moulin de la Housse, B.P. 347, 51062 Reims Cedex, France 

0097-6156/96/0628-0145$15.00/0 
© 1996 American Chemical Society 
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solvent or matrix effects. To this list, we can add that good ab initio calculations 
require large basis sets and an adequate treatment of correlation, and that ac
curate comparisons with experiment can be complicated by the need to include 
vibrational and orientational contributions. Because of its scaling properties with 
respect to calculations on increasingly larger molecules and its abil ity to treat cor
relation in a simple way, density-functional theory ( D F T ) is a promising method 
for quantitative calculations of the optical properties of molecules in a size range of 
practical interest. This article is a report of where we stood in the Fal l of 1994 in 
generating and calibrating essential D F T machinery for treating optical problems. 
Given that linear as well as nonlinear optical properties are a topic which has long 
been of interest to chemists and is likely to remain so for some time, we wi l l not 
restrict the topic only to nonlinear properties but wi l l also discuss the use of D F T 
for calculating simple polarizabilities and excitation spectra. Our current work on 
vibrational contributions [8] and solvent effects [9] wi l l be discussed elsewhere. 

Let us first situate D F T among the variety of quantum chemical methods 
available for calculating the optical properties of molecules. A t one extreme, i m 
pressively quantitative ab initio methods, based upon, for example, M0ller-Plesset 
perturbation theory [10], equation-of-motion [11], or coupled cluster [12] tech
niques, have been developed whose application tends to be l imited to very small 
molecules. A t the other extreme, semiempirical methods allow the consideration 
of much larger molecules, but the reliance on parameterizations l imits the type of 
molecules and variety of properties to which any given semiempirical method can 
be applied with confidence. D F T offers the advantages of an ab initio method, 
yielding results for a variety of properties that are typically better than those ob
tained from the Hartree-Fock (HF) approximation, but with less computational 
effort. Although D F T is more computationally demanding than semi-empirical 
methods, it gives much more reliable results when a broad range of molecular 
types and properties is considered. Thus D F T represents a promising approach 
to the quantitative treatment of the optical properties of molecules for systems 
complex enough to be of interest to bench chemists and materials scientists. 

A t present, the potential of D F T remains largely untapped in this respect. A l 
though there have been numerous applications of D F T to the calculation of elec
tric response properties of atoms and solids (see Ref. [13] for a review), much less 
work has been done on molecular systems. Studies assessing D F T for calculation 
of molecular electric response properties have been for static properties, pr imari ly 
dipole-polarizabilities and hyperpolarizabilities [9,14-19] of small molecules. Work 
on D F T calculations of dynamic molecular response properties has been l imited 
to a few calculations using either spherically-averaged pseudopotentials [20,21] or 
single-center expansions [22,23], in order to make use of atomic-like algorithms, 
but which are not of any general ut i l i ty for molecular calculations. After a brief 
look at how well D F T works for static molecular response properties, we focus on 
the first implementation of time-dependent density functional response theory us
ing an algorithm appropriate for general molecular calculations, giving a summary 
of our method and results for N 2 . The present results are at the level of the ran
dom phase approximation. Implementation of the fully-coupled time-dependent 
local density approximation is in progress. A more complete description of our 
methodology wi l l be published elsewhere [24]. 
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M E T H O D O L O G Y 

Since excellent reviews of density-functional theory ( D F T ) are readily accessible 
[25,26], we wi l l restrict our attention to what is needed for a discussion of the 
current status of D F T for the calculation of molecular optical properties. 

S t a t i c P r o p e r t i e s . W i t h few exceptions, molecular applications of D F T are 
based upon the K o h n - S h a m formalism, in which the exact ground state energy 
and charge density of a system of TV electrons in an external local potential are ob
tained using the exact exchange-correlation functional. In practice this exchange-
correlation functional must be approximated. The terms "local potential" and 
"ground state" are important. The former excludes a fu l l , rigorous treatment of 
magnetic effects, though useful results can be obtained in practice [27-29]. The 
latter, together with the fact that the K o h n - S h a m formalism is time-independent, 
excludes the treatment of dynamic response properties in the traditional the
ory. Extensions of the formalism to the time-dependent domain have been made, 
and dynamic response properties wi l l be discussed in the next subsection. The 
standard K o h n - S h a m formalism is, however, exact for static electronic electric 
response properties, in the l imit of the exact exchange-correlation functional. 

The charge density is obtained in Kohn-Sham theory as the sum of the charge 
densities of K o h n - S h a m orbitals i/)f with occupation numbers / f . That is 

p(r) = , l (r) + p*(r), (1) 

where 

P » = £ / n V > f ( r ) | 2 . (2) 

(Hartree atomic units are used throughout.) The orbitals are found by solving 
the self-consistent K o h n - S h a m equations 

4 v 2
 + < f f(r) ^?(r) = ^ f ( r ) , (3) 

where the effective potential v°a is the sum of an external potential which, in 
molecular applications, is the sum of nuclear attraction terms and any applied 
potential v£ p p l , and a self-consistent field (SCF) term, 

«§OF(r) = / 7 ^ 7 dr' + v'Jp\ , ' ](r) , (4) 

which differs from the corresponding quantity in the Hartree-Fock approxima
tion in that the Hartree-Fock exchange operator has been replaced with the 
density-functional exchange-correlation potential v°c. No practical exact form 
of the exchange-correlation potential is known, so it is approximated in prac
tice. Popular approximations include the widespread local density approximation 
( L D A ) and gradient-corrected func t i ona l such as the B88x-|-P86c functional. 
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If the applied potential corresponds to a uniform electric field, 

<p P i (r) = F T , (5) 

then the dipole moment is 

/
nuclei 

r,-p(r;F)<*r + £ rAiZA, (6) 
A 

the dipole-polarizability is 

Q , j ( F ) = ~wT' ( 7 ) 

the first dipole-hyperpolarizability is 

fe(F) = ^ f l , (8) 

etc. Since the Hellmann-Feynman theorem holds in D F T [17], these are equivalent 
to energy derivatives. Of course, reported dipole moments, polarizabilities, and 
hyperpolarizabilities are evaluated at zero field strength. The mean polarizabil ity 
(a) , polarizability anisotropy ( A a ) and mean first hyperpolarizability (/?) are 
defined in the usual manner as 

< * = ^ t r a , (9) 

( A a ) 2 = i [ 3 t r ( a 2 ) - ( t r a ) 2 ] , (10) 

0 = - — (11) 

where the permanent dipole moment of the molecule is directed in the +z direc
tion. 

The easiest method to program for obtaining the static response properties is 
the finite field method in which the K o h n - S h a m equations are solved for several 
values of the applied field and the derivatives are determined numerically, either by 
finite difference [14,15] or by least-squares fit to a polynomial expansion [16,17,19]. 
Unfortunately the need to optimize the choice of field strengths used and the 
method's susceptibility to numerical noise arising from e.g. grids used in D F T 
programs, greatly complicate routine calculations of higher-order polarizabilities, 
which however can st i l l be extracted with some care [16,17,19]. 

Another approach, one which avoids these problems, is to calculate the deriva
tives (7) and (8) analytically by solving a set of coupled perturbed K o h n - S h a m 
( C P K S ) equations [18,30-33]. The method is formally analogous to the coupled 
perturbed Hartree-Fock ( C P H F ) method, but while the C P H F method is ap
proximate, the C P K S method becomes exact in the l imit of the exact exchange-
correlation functional. The C P K S equations are normally derived by taking 
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derivatives of the total energy or dipole moment in a finite basis set representa
tion. In the next section, we show a different way to obtain the C P K S equations. 

D y n a m i c P r o p e r t i e s . Dynamical effects are essential to the description of the 
interaction of light and matter. Taking them into account requires the extension 
of D F T to the time-dependent domain. For a review of the formal foundations of 
time-dependent D F T , see Ref. [34]. The result is that the time-dependent charge 
density 

^ ( r , 0 = £ / r i # O M ) l a (12) 

is calculated from orbitals satisfying a time-dependent K o h n - S h a m equation 

~ \ V 2 + < f f ( r , <)] V f (r, t) = i^f(r, t) (13) 

where the effective potential i£ f f is now the sum of the time-dependent external 
potential and a self-consistent field term 

" s c F ( r , t) = J 0 ^ dr> + v'„\p\ ? l ] (r , t), (14) 

which involves a new time-dependent exchange-correlation functional v°c. N a t u 
rally E q . (13) reduces to E q . (3) in the l imit of the ground state, static problem. 

Working in the energy (= hx frequency) representation, the linear response 
of the charge density is related to the perturbation ^̂ ppi through the generalized 
susceptibility xa,T? 

6p°(r, w) = W X ' - T ( r , r ' ; ^SV^^LJ) dr>. (15) 
T J 

The dynamic polarizability is calculated as 

o , » = j r , - M r > " ) * > ( 1 6 ) 

when 8vAVV\((jj) = rjF(u) . Since the K o h n - S h a m equations have the form of 
one-particle, orbital equations, we can rewrite E q . (15) as 

Sp"(r, « ) = £ / XK's ( r , r ' ; a , ) * , ^ , w) dv', (17) 
T J 

where 

x£ s
T(r,r';u,) = jL [WITi*)] k ^ r M ] ' (18) 

has the form of the generalized susceptibility for a system of independent particles, 
and the response of the effective potential 8v°ff is the sum of the perturbation <^£ p p l 

and the response of the self-consistent field term, 
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150 NONLINEAR OPTICAL MATERIALS 

ft&pfr u>) = j 6-y^T & + £ / AT(r, r'; u , )^(r ' , u) dv'. (19) | r - r ' | 

The exchange-correlation kernel is given by 

it-f) K c ( r ^ ) 

It reduces to 

/ - ( r , r ' ; W ) = / e ' ^ - ' ' ) g ^ M ^ - 0 . (20) 

/ - ( r ' r ' ) = W ) ( 2 1 ) 

in the static l imit (u> = 0), in which case Eqs. (17)-(21) become the C P K S equa
tions. 

When u) ^ 0, solving the dynamic coupled equations allows the dynamic po
larizabil ity a(cj) to be calculated. The method can also be extended to other 
dynamic properties, including higher-order polarizabilities and excitation spec
tra . In practice, we obtain excitation spectra by noting that the exact dynamic 
dipole-polarizability can be expanded in a sum-over-states representation as 

excited states r 

« H = £ j r 1 ^ (22) 

where the a;/ are vertical excitation energies and the / / are the corresponding oscil
lator strengths. Since practical calculations use approximate exchange-correlation 
functionals, the calculated dynamic polarizability wi l l also be approximate. Nev
ertheless, it st i l l has the same analytic form as the exact dynamic polarizability, 
so the poles and residues of the calculated dynamic polarizability can be identi
fied as (approximate) excitation energies and oscillator strengths. Note that the 
Thomas -Re i che -Kuhn ( T R K ) sum rule [35] 

£ / / = W (23) 

should also be satisfied in the l imit of the exact (time-dependent) exchange-
correlation functional. 

The problem of finding good time-dependent exchange-correlation functionals 
is s t i l l in its infancy. This problem does not arise at the level of the independent 
particle approximation ( IPA) , which consists of taking SVSCF — 0- The next level 
of approximation is the random phase approximation ( R P A ) , where the response 
of the exchange-correlation potential (second term in E q . (19)) is taken to be zero, 
which turns out to be a reasonably good approximation for some purposes [vide in
fra). Note that the R P A includes some exchange-correlation effects, namely those 
which enter through the orbitals and orbital energies of E q . (18). A notation such 
as R P A / L D A gives a more complete description of the level of approximation (i.e. 
approximation used for the response / approximation used for the unperturbed 
orbitals and orbital energies.) A problem with the R P A is that it does not re
duce to the C P K S equations in the static l imi t . This requirement is met by the 
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8. CASIDA ET AL. Optical Properties from Density-Functional Theory 151 

adiabatic approximation ( A A ) in which the reaction of the exchange-correlation 
potential to changes in the charge density is assumed to be instantaneous, 

6pT{r',V) ~ 6pr{T>,t)b{t t } - ( M ) 

This assumption is rigorous in the static case and is at least reasonable in the 
low frequency l imi t . When the exchange-correlation functional is local, the A A is 
usually referred to as the time-dependent local density approximation ( T D L D A ) . 
Since the orbitals and orbital energies used are also at the L D A level, the notation 
T D L D A / L D A gives a more complete description of this A A . A n approximation 
which goes beyond the A A has also been suggested [34]. 

The dynamic results reported here were calculated at the R P A / L D A level. 
Implementation of the T D L D A is in progress. 

C O M P U T A T I O N A L D E T A I L S 

The calculations reported here were carried out using two programs written at 
the University of Montreal . The first program, deMon (for "densite de MontreaF) 
[36-38], is a general purpose density-functional program which uses the Gaussian-
type orbital basis sets common in quantum chemistry. The second program, 
DynaRho (for "Dynamic Response of /p"), is a post-deMon program which we are 
developing to calculate properties which depend on the dynamic response of the 
charge density. In DynaRho, the formal equations of the previous section are 
solved in a finite basis set representation. Although a ful l description of how this 
is accomplished is beyond the scope of the present paper, some insight into the 
operational aspects of DynaRho can be obtained by considering the particularly 
simple case of the H 2 molecule oriented along the 2-axis and described using a 
min ima l basis set. There are only two molecular orbitals in this case. The occu
pied tr-bonding combination wi l l be denoted by the index i , while the unoccupied 
<7-antibonding combination wi l l be denoted by a. In the molecular orbital repre
sentation, the response of the density matrix , 6P?a, to an electric field Fzcos(wt) 
is found, within the R P A , by solving a matrix equation, 

J 2 i _ [ ( c« e*')2 + 2 ( e * " ei)(ia>ia) 2 ( e « " e * ) ( i a ; i a ) 1 \ ( SPi« \ 
\ [ 2(e a - ti)(ia- ia) (e a - e,)2 + 2(e a - c,-)(ia; ia) J J \ SPt

l
a ) 

= < « . - « ) ( £ ) (25) 

where 

(r* ; tu) = / | V r ( r ) ^ ( r ) | ^ | ^ ( r ' ) V ' u ( r ' ) r f r r f r ' (26) 

and Zia is a matrix element of the multiplicative operator z. Since 4-index integrals 
are not implemented in deMon, DynaRho uses auxiliary functions to construct the 
needed electron repulsion integrals from at most 3-center integrals [24]. Once 
E q . (25) is solved, the dynamic polarizability is given by 
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<*«(w) = -zia(6Pl + 6Pl) . (27) 

The matr ix shown in square brackets in E q . (25) resembles a small "configuration 
interaction (CI) matr ix" in so far as its columns and rows, in the general case, 
correspond to the different single excitations possible out of the ground state 
configuration. The excitation energies are obtained by diagonalizing this matr ix , 
to obtain the singlet-singlet excitation energy 

Although the ground state of H 2 at its equil ibrium geometry may be described, to 
a first approximation, by a single determinantal wavefunction, linear combinations 
of at least two determinants are needed to describe the singlet and triplet excited 
state wavefunctions. The difficulty of describing such states with conventional 
D F T , which is a fundamentally single determinantal theory, is sometimes known 
as the "multiplet problem." Notice how response theory leads to a natural solution 
involving a small " C I matr ix . " Notice also that the R P A singlet-triplet excitation 
energy expression is just the independent particle approximation (IPA) excitation 
energy. This is an example of the more general result that singly-excited triplet 
configurations which are degenerate at zero-order are not coupled at the R P A level. 
However this problem is resolved when the response of the exchange-correlation 
potential is included in the theory. A more detailed account of the algorithm used 
in DynaRho is given elsewhere [24]. 

F in i te field calculations of static response properties were carried out wi th 
deMon. The least squares fitting procedure of Ref. [17] was used when hyper
polarizabilities were desired (i.e. for the results in Tables I and III), otherwise 
the simple finite difference method using deMon's default field step size of 0.0005 
a.u. was used. Note that there are no significant differences between these two 
methods for calculating simple polarizabilities. 

Dynamic properties, including spectra, were calculated with DynaRho at the 
level of the random phase approximation ( R P A / L D A ) . Static properties were also 
calculated using DynaRho at both the R P A and independent particle approxima
tion ( IPA) levels. 

Two functionals were considered, for the static properties. The parame
terization of the local density approximation ( L D A ) used in deMon is that of 
Vosko, W i l k , and Nusair [39]. This was supplemented with Becke's 1988 gradient-
correction for exchange [40] and Perdew's 1986 gradient-correction for correlation 
[41] to give the B88x+P86c functional. Since Becke's gradient correction is de
signed to give the correct asymptotic behavior of the exchange energy density, 
some improvement over the L D A is expected in properties such as polarizabilties 
and hyperpolarizabilities which are sensitive to the long range behavior of the 
charge density. 

Unless otherwise specified, al l calculations have been carried out at the ex
perimental geometries (references are given in Ref. [17]) using deMon's extra-fine 

(28) 

(29) 
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random grid, the hydrogen atom [3,1;3,1] auxiliary basis set and heavy atom 
[4,4;4,4] auxiliary basis sets from the deMon basis set library. The convergence 
parameters used in our calculations tend to be tighter than those normally used 
in deMon calculations, since experience indicates that such parameters are needed 
for well-converged polarizability calculations. 

Several different orbital basis sets are used in the present work. The D Z V P , 
D Z V P 2 , and T Z V P basis sets [42] are from the deMon basis set library. The S T O -
3G and Sadlej basis sets are from Refs. [43] and [44,45] respectively. The T Z V P + 
orbital basis set is the V T Z P - f basis set of Ref. [17]. The Sadlej + basis set consists 
of the Sadlej basis set supplemented with the field-induced polarization functions 
of Ref. [17]. Final ly , the DifF basis set, used for N 2 , is the T Z V P + augmented with 
two diffuse s-type Gaussian primatives with exponents as = 0.028 and 0.0066 and 
with one set of diffuse p-type Gaussian primatives with exponent ap = 0.025. 

R E S U L T S 

S t a t i c r e s u l t s . In principle, D F T static electronic electrical response properties 
become exact in the l imit of the exact exchange-correlation functional. This is in 
contrast to the Hartree-Fock approximation which neglects electron correlation 
effects and whose accuracy, for this reason, decreases markedly as the order of the 
response property increases (Table I). In practice, the use of approximate func
t i o n a l (and finite basis sets) place restrictions on the quality of the results which 
can be obtained from D F T . Nevertheless, a number of studies using the finite field 
method to calculate molecular static electrical response properties [9,14-19,46], 
indicate that modern D F T is capable of producing accurate molecular response 
properties. The quality of results which can be expected and some of the con
cerns which enter into D F T calculations of dipole moments, polarizabilities, and 
hyperpolarizabilities are illustrated here by some example calculations on water 
and nitrogen. 

Table I shows the dipole moment, mean polarizability, polarizability anisop-
tropy, and mean first hyperpolarizability of water, as a function of basis set. The 
minor differences shown for different deMon calculations with the same orbital ba
sis set arise from small variations in the auxiliary functions, grid, and convergence 
criteria used in the calculations. The basis sets are arranged in order of decreasing 
energy in the absence of an applied field. To the extent that this measures the de
gree of convergence of first-order properties, one would expect the dipole moment 
to converge with decreasing energy. Addit ional field-induced polarization (FIP) 
functions are required in order to describe the change in the dipole moment due 
to an applied electric field needed for an accurate description of polarizabilities 
and hyperpolarizabilities. Results from two types of F I P basis sets are given in 
Table I. The Sadlej basis set [44,45] was designed as a medium sized basis set for 
ab initio polarizability calculations. Basis sets whose name includes a plus sign 
(+) have been augmented with the F I P functions of Ref. [17]. 

It is well-known that L D A dipole moments are excellent. This is il lustrated in 
the case of water where the L D A value is 1 to 2% larger than the experimental 
value (depending upon the basis set used) and in much better agreement with 
experiment than the corresponding Hartree-Fock (HF) value which is about 7% 
too large. 
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T A B L E I. Convergence of water static response properties with respect to basis set. A l l den
sity-functional calculations in this table were performed at the L D A level, at the experimental 
geometry, and using the finite field method with least squares fitting. The energy, dipole mo
ment, polarizability, and first hyperpolarizability are expressed in atomic units. Basis sets used 
in this paper are described in the text. Other basis sets are described in the references cited. 
Note that the V T Z P + basis of Ref. [17] and the T Z P + basis of Ref. [47] are identical with the 
present T Z V P - f basis set; see text for other differences between these calculations. 

Basis S i z e a E n e r g y b a A a P Reference 
Previous deMon 

T Z V P 29 -75.8996 0.853 6.20 3.39 [47] 
T Z V P 29 0.852 6.20 3.45 -47.8 [17] 
T Z V P + 42 -75.9031 0.7455 10.12 0.30 [47] 
T Z V P + 42 0.743 10.13 0.32 -21.8 [17] 
A N O + 73 -75.9127 0.733 10.18 0.47 [47] 
N H F + 104 -75.9132 0.737 10.47 0.17 [47] 

Present work 
Sadlej 44 -75.8951 0.732 10.56 0.27 -19.1 
Sadlej-f- 56 -75.8962 0.732 10.70 0.10 -23.4 
T Z V P + 42 -75.9015 0.740 10.16 0.37 -21.7 

Exper iment 
0.727 e 9.921 f 0.66 f -21.8(9)8 

Convent ional ab initio methods 
H F 0.780 8.51 1.08 -9.73 [17] 
H F 0.7789 8.531 -10.86 [10] 
S D Q - M P 4 0.724 9.64 -17.96 [10] 

a Number of contracted Gaussian orbitals. 
b T h e so-called "fitted energy" in deMon. 
e F r o m Ref. [48]. 
f F r o m Ref. [49]. 
«From Ref. [50]. 
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T A B L E II. Convergence with respect to basis set of the energy and mean polarisability of N 2 
(in atomic units). 

Basis set Size Energy* M e a n polar izabi l i ty (a) 
L D A finite field R P A / L D A 

T R K s u m 

S T 0 - 3 G 10 -107.147182 3.879 3.516 3.362 
D Z V P 30 -108.657734 9.917 8.491 10.729 
D Z V P 2 30 -108.657734 9.292 8.450 10.661 
Sadlej 52 -108.664703 11.943 10.954 10.435 
T Z V P 38 -108.676105 9.653 8.759 11.851 
T Z V P + 38 -108.680713 11.794 10.780 11.480 
Di f f 62 -108.680790 11.795 10.868 11.488 

Exper iment 
11.74 b 14. c 

a T h e so-called 
b R e f . [51]. 

"numerical energy" in deMon. 

c N u m b e r of electrons. 

Polarizabilities calculated at the L D A level are also quite good. In the case of 
water, the L D A mean polarizability is 2 to 7% larger than the experimental value 
while the H F value is about 14% too low. Figures 1 and 2 compare theoretical 
vs. experimental values of the mean polarizability and polarizability anisotropy 
for a few small molecules, at several levels of approximation. The polarizabil 
i ty anisotropy, being a small difference of larger quantities, is considerably more 
difficult to calculate accurately than is the mean polarizability. The independent 
particle approximation ( IPA) , which consists of neglecting SVSCF entirely, is clearly 
inadequate for quantitative polarizability calculations. The random phase approx
imation ( R P A ) includes the coulomb part of the response SVSCF but neglects the 
exchange-correlation part of £VSCF> and gives results comparable to those obtained 
from the Hartree-Fock approximation. The fully coupled T D L D A includes both 
the coulomb and exchange-correlation contributions to SVSCF and would be equiv
alent to the finite field L D A results shown here. The fact that the R P A results 
are far more similar to the finite field results than to the I P A indicates that, as 
would be expected on physical grounds, the response of the coulomb part of V S C F 
to an applied electric field is an important part of the polarizability, whereas the 
response of the exchange-correlation potential is a relatively small contribution. 
Table II shows the convergence of the mean polarizability values for N 2 wi th re
spect to basis set. The discrepancy between the calculated value and theoretical 
l imi t of the T R K sum arises from the limitations of the basis sets used here, 
which are oriented towards a good description of the 10-electron valence space of 
the ground state molecule, but not necessarily of the core. These basis sets are 
expected to describe only the low lying excited states reasonably well. 

Less data is available to judge the quality of D F T calculations of molecular 
hyperpolarizabilties, but indications to date [9,16-19] are that mean first hyper
polarizabilities are pretty good at the L D A level. The L D A value of /? in Table I 
is in much better agreement with experiment than is the H F value. Neverthe-
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EXPERIMENT (a.u.) 

F I G . 1. Comparison of theoretical and experimental mean polarizabilities 
for N 2 , C O , C H 4 , H 2 0 , N H 3 , and H F : independent particle approximation, 
solid squares; random phase approximation, solid diamonds; finite field, open 
squares; coupled Hartree-Fock, open triangles. The density-functional calcu
lations used the local density approximation and the T Z V P - f - basis set. The 
coupled Hartree-Fock and experimental values are taken from Ref. [17]. See 
text for additional details. 

> 
00 
o 
LLI 

0 1 2 3 4 5 

EXPERIMENT (a.u.) 

F I G . 2. Comparison of theoretical and experimental polarizability 
anisotropics for N 2 , C O , C H 4 , H 2 0 , N H 3 , and H F : independent particle ap
proximation, solid squares; random phase approximation, solid diamonds; 
L D A finite field, open squares; coupled Hartree-Fock, open triangles. The 
density-functional calculations used the local density approximation and the 
T Z V P + basis set. The coupled Hartree-Fock and experimental values are 
taken from Ref. [17]. See text for additional details. 
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T A B L E III. Sensitivity of calculated dipole moment, mean polarizability, polarizability 
anisotropy, and mean hyperpolarizability of H 2 O (in a.u.) to geometry and choice of functional. 
A l l calculations use the Sadlej basis set (see text). 

F u n c t i o n a l Geometry a Aa P 
L D A O p t i m i z e d 0.728 10.80 0.46 -20.0 
B 8 8 x + P 8 6 c O p t i m i z e d 0.713 10.68 0.54 -18.4 
L D A E x p e r i m e n t a l 0.732 10.56 0.27 -19.1 
B 8 8 x + P 8 6 c E x p e r i m e n t a l 0.708 10.46 0.35 -17.4 

less, it should be emphasized that a truly rigorous comparison with experiment 
would require the inclusion of finite frequency effects and vibrational contribu
tions. Comparison with the singles, doubles, quadruples fourth-order M0l ler -
Plesset perturbation theory results of Maroulis [10] (Table I) suggests that the 
L D A static electronic hyperpolarizability is too large. 

Table III shows the sensitivity of our water results to the geometry used and 
choice of functional. Neither the mean polarizability nor the mean first hyperpo
larizabil ity is very sensitive to small changes in geometry. Roughly speaking, this 
is because the mean polarizability is a volume-like quantity and the mean hyper
polarizabil ity is just its derivative. The polarizability anisotropy, being related 
to molecular shape, is much more sensitive to small changes in geometry. The 
B88x+P86c gradient-corrected functional is expected to yield improvements over 
the L D A for properties which depend upon the long range behavior of the charge 
density. However, although the improvements for water (and sodium clusters [46]) 
are in the right direction, they are not dramatic. 

D y n a m i c r e s u l t s . Results are given here at the R P A / L D A level. A treatment 
including coupling of exchange-correlation effects wi l l be reported in due course. 
We now have preliminary R P A / L D A results for a half dozen small molecules. 
For purposes of the present summary, we focus on N 2 , an important benchmark 
molecule for calculation of excitation spectra [11,12,52], and one for which the 
experimental dynamic polarizability [51] and experimental excitation energies [53] 
are readily available. 

Figure 3 shows our calculated dynamic mean polarizability in comparison 
with the experimental quantity. The frequency dependence is calculated at the 
R P A / L D A level, and is combined with the finite field L D A static value to give 

a(u>) = ( a R P A (u , ) - a R P A ( 0 ) ) + a F F ( 0 ) . (30) 

A similar procedure is sometimes adopted to graft the dynamic behavior from the 
time-dependent Hartree-Fock approximation ( T D H F A ) calculations onto better 
post-Hartree-Fock static calculations. The agreement with experiment is reason
ably good. 

Exci tat ion spectra represent a considerably more challenging test of the 
R P A / L D A . We restrict our attention to the singlet-singlet transitions since, as 
was noted earlier, the singlet-triplet transitions are uncoupled at the R P A level. 
They are also "dark" states in the sense of having oscillator strengths which are 
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PHOTON ENERGY (eV) 

F I G . 3. Frequency dependence of the mean polarizability of N 2 . The the
oretical curve (dashed) is for the hybrid finite f i e l d - R P A / L D A calculation 
described in the text, with the T Z V P + basis set. The experimental curve 
(solid) is constructed from data taken from Ref. [52]. 

12.0 

> 

7.0 - 1 1 1 1 1 1 ' 
TDA TDHFA MRCCSD EXPT R P A / L D A 

M E T H O D 

F I G . 4. Comparison of the first three singlet-singlet excitation energies of 
N 2 calculated by various methods with experiment. The Tamm-Dancoff ap
proximation ( T D A ) , time-dependent Hartree-Fock approximation ( T D H F A ) 
and singles and doubles multireference coupled cluster values are taken from 
Ref. [12]. The experimental values are taken from Ref. [52]. The R P A / L D A 
values were calculated using the Sadlej basis. The excited states and their 
dominant one-electron contributions are: a 1 n f f (3cru —• 1TTs), open square; a 
* E ~ ( l 7 r u —> l 7 r 5 ) , open triangle; and w 1AU (liru —• l 7 r 5 ) , solid triangle. 
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T A B L E IV . Oscillator strengths for the first four vertical transitions of N 2 having nonzero 
oscillator strength. The R P A / L D A values are calculated with the Sadlej basis set and do 
not include a degeneracy factor of 2 for the 1UU states. The time-dependent Hartree-Fock 
approximation ( T D H F A ) and second-order equations-of-motion (EOM2) oscillator strengths are 
taken from Ref. [11]. 

E x c i t a t i o n States T D H F A E O M 2 R P A / L D A 
—• 2?r u 0.091 0.12 0.02 

3(7G 3cr„ r ' 1Y+ 0.65 0.094 0.11 
2au - * l-Kg 0.32 0.49 0.07 

b ' 1 ^ 0.15 0.19 0.15 

zero by symmetry. Figure 4 shows a comparison of the first 3 singlet-singlet vert i 
cal excitation energies for N 2 , calculated by various methods, with the experimen
tal values. Both the Tamm-DancofF approximation ( T D A ) , which is equivalent 
to a singles configuration interaction treatment of the excited states, and the 
T D H F A give the wrong ordering of these states. The R P A / L D A gives the cor
rect ordering but, not surprisingly, does not do as well as multireference coupled 
cluster ( M R C S D ) calculations. These excitations are to spectroscopically "dark 
states". The excitation energies of the first four "bright states" calculated at 
the R P A / L D A level are compared in Figure 5 with excitation energies calculated 
using the T D H F A and using a second-order equation-of-motion ( E O M 2 ) method 
and with experimental transition energies. Calculated vertical transition energies 
for these states are strongly influenced by the presence of nearby avoided crossings 
of the excited state potential energy surfaces. Nevertheless, the R P A / L D A exci
tation energies are quite reasonable and all within about 1 eV of the experimental 
results. A comparison of oscillator strengths is given in Table IV . Experimen
tal values are difficult to extract with precision and so have been omitted. Our 
R P A / L D A oscillator strengths do not seem to be fully converged with respect to 
basis set saturation, and should be viewed with caution. 

The good quality of the results for N 2 are particularly noteworthy in view of the 
fact that conventional (time-independent) K o h n - S h a m theory is a fundamentally 
single-determinantal theory. One of the important advantages of the present t ime-
dependent density-functional response theory approach is that it provides a m u l t i -
determinantal treatment of the excitations. A l l of the excited states of N 2 treated 
here have an important multideterminantal character. This is especially true of the 
1 S ~ and 1 A U states each of which requires a min imum of four determinants simply 
to obtain a wavefunction of the correct symmetry. Our R P A / L D A calculation 
automatically includes not only those determinants required by symmetry, but 
also contributions from other determinants as well. 

For the half dozen molecules studied so far, the singlet-singlet excitation ener
gies obtained at the R P A / L D A level are generally within l e V of the experimental 
values. It is interesting to note that the sum-over-states expression (22) implies a 
relationship between the quality of the excitation spectrum and the quality of the 
polarizability. Thus, for a molecule such as N 2 , an absolute error of < 1 eV in the 
excitation energies translates into a reasonably small error in the polarizability, 
yet for a molecule such as N a 2 with extraordinarily low excitation energies (first 
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F I G . 5. Comparison of the first four excitation energies with nonzero oscil
lator strength of N 2 calculated by various methods with experiment. The 
time-dependent Hartree-Fock approximation ( T D H F A ) and second-order 
equation-of-motion ( E O M 2 ) values are taken from Ref. [11] and the ex
perimental values were taken from Ref. [52]. The R P A / L D A values were 
calculated using the Sadlej basis set. The excited states and their domi
nant one-electron contributions are: b 1UU (2au —> open square; b ' 
*£+ (lwu —» I71-3), open triangle; c 3

 1Iiu (3<rg —> 27r u ) , solid square; c 4 ' 
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bright state at about 1.8 eV [54]), the R P A / L D A polarizability is considerably 
worse. 

C O N C L U S I O N 

This paper has given a summary of where we stand (as of fall 1994) in gener
ating and calibrating essential D F T methodology for optical problems. In some 
ways the methods used here bear a close resemblence to Hartree-Fock-based tech
niques. However, whereas the Hartree-Fock method is an approximation, D F T 
electronic electrical response properties are formally exact in the l imit of the exact 
exchange-correlation functional. This , together with efficiencies arising from the 
use of only local potentials in D F T , makes D F T a promising method for quanti
tative calculations of optical (and other) properties of molecules in a size range 
comparable to or greater than that now attainable with the Hartree-Fock method, 
provided, of course, that the approximate exchange-correlation functionals used 
in practical calculations are sufficiently accurate. That this is the case has been 
il lustrated by the quality of static dipole moments, dipole polarizabilities, and 
first dipole polarizabilities of small molecules. 

Since optical measurements are made with finite frequency electric fields, the 
extension to the time-dependent regime is important. Thus dynamic polarizabil 
ities and excitation spectra, calculated at the R P A level, using the first general 
molecular implementation of time-dependent D F T (the DynaRho program), have 
been reported here for the first time. The results to date are quite encouraging, 
and a ful l treatment, including the response of the exchange-correlation potential , 
is already underway. This approach promises to become a powerful technique, 
applicable to a wide range of complex molecules and materials models. 
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Chapter 9 

A Combined Hartree-Fock and Local-
Density-Functional Method To Calculate 
Linear and Nonlinear Optical Properties 

of Molecules 

Brett I. Dunlap 1 and Shashi P. Karna2,3 

1Naval Research Laboratory, Code 6179, Washington, D C 20375-5342 
2Photonics Research Laboratory, Department of Chemistry, 

State University of New York, Buffalo, NY 14214 

The differences that are relevant to the calculation of optical prop
erties by perturbation theory between the density-functional and 
Hartree-Fock one-electron equations are discussed. Most impor
tantly, local density-functionals and Hartree-Fock underestimate 
and overestimate, respectively, the HOMO-LUMO gap defined as 
the difference between the ionization potential and the electron affin
ity of a molecule. This suggests averaging the density-functional and 
Hartree-Fock eigenvalues for use in a time-dependent Hartree-Fock 
calculation. The method is used to compute the linear and nonlinear 
static polarizabilities of HF, H 2 O, and CO. The results are compared 
with the experimental as well as other theoretical data. 

Accurate prediction of molecular linear and nonlinear optical properties by first-
principles quantum chemical methods presents a major challenge to computational 
theoretical chemistry. The two most important factors influencing the accuracy of 
the predicted linear and nonlinear polarizabilities are the (i) atomic basis set and 
(ii) the amount of electron correlation included in the calculation. W h i l e the basis 
set problem in the accurate ab initio prediction of molecular polarizabilities has 
been somewhat alleviated by the development of the so called "direct" methods (1) 
that allow the use of a considerably extended space of one-electron functions and 
by the availability of appropriately optimized semidiffuse and diffuse polarization 
functions, adequate treatment of electron correlation (EC) remains a challenging 
problem. Several recent studies have indicated that the first-principles methods 
based on the Hartree-Fock (HF) theory generally underestimate molecular polar
izabil ity and hyperpolarizabilities compared to the gas phase experimental data 
(2-4). These studies have also shown that including E C may change the H F results 
by as much as 50%. Unfortunately, the post -HF methods based on perturbative 

3Current address: Space Electronics Division, U.S. Air Force Phillips Laboratory, 
3550 Aberdeen Avenue, Southeast, Kirtland Air Force Base, N M 87117-5776 

This chapter not subject to U.S. copyright 
Published 1996 American Chemical Society 
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or variational treatment of E C are too expensive to be used to investigate the 
nonlinear optical ( N L O ) properties of the larger molecular systems of practical 
interest. 

The practical difficulties in the use of conventional first-principles quantum chem
ical methods to investigate optical nonlinearities of medium to large molecular sys
tems has created a need for alternative, chemically accurate computational tools 
and theoretical models. One such theoretical model that offers a clear computa
tional advantage over the conventional quantum chemical methods, while retaining 
high predictive chemical accuracy, is density functional theory ( D F T ) . In recent 
years, there has been an increasing effort to extend the capabilities of DFT-based 
methods to predict molecular linear and N L O properties. Static linear and non
linear polarizabilities of atoms and molecules have been predicted with reasonable 
accuracy both by the finite-field ( F F ) (5-9) and analytical derivative methods 
(10) wi th in the D F T formalism. Although these calculations have been success
ful in demonstrating the capability of the DFT-based methods to predict N L O 
properties, the real challenge of predicting the experimentally observable quantity, 
which involves a non-zero optical frequency, has yet to be met. 

Subbaswamy and coworkers (11) have used a perturbative scheme within the 
local-density approximation of D F T to predict the linear and nonlinear response 
of closed-shell atoms and ions. Their formalism uses a perturbation expansion of 
the Kohn-Sham equations (12) in the presence of a static electric field and self-
consistent solution of the perturbed Kohn-Sham equations. In their formulation, 
the fourth-order energy, which gives the second-hyperpolarizability, 7, is obtained 
by solving the perturbed equations only up to the second-order. Al though, a sim
ilar method including the perturbation due to an optical field has not yet been 
reported, the work of Subbaswamy and coworkers could form the basis of a com
putationally viable method within D F T to predict accurately N L O properties of 
systems of practical interest. 

Whi le there have been a number of promising efforts to apply and extend D F T to 
time-dependent phenomena (12-14)a less dramatic departure from current N L O 
technology would be to correct the highly-developed time-dependent-Hartree-Fock 
( T D H F ) method for known deficiencies. As wi l l be shown below, the only zeroth-
order quantities appearing in the coupled perturbed T D H F equations (15) are the 
self-consistent field (SCF) eigenvector coefficient matr ix , C(°), and the eigenvalues, 
e(°). The eigenvectors, and the wavefunctions that they are used to construct, are 
highly constrained by electronic orthogonality; they change relatively l i t t le with 
each order of perturbation theory. O n the other hand, the rate of convergence of 
the perturbation expansion can be significantly improved by including the first 
and even higher-order corrections (as in the Feenberg formula (16)) to the zeroth 
order energies in the denominators of the various formulae. This suggests that a 
promising approach might be to correct in some practical manner the fact that 
the H F eigenvalues have too large a gap between the highest occupied molecular 
orbital ( H O M O ) and lowest occupied molecular orbital ( L U M O ) . 

In this chapter, we present a mixed H F - D F T method to compute molecular linear 
and N L O properties using Gaussian-type atomic basis functions. The motivation 
for this work has been to devise a method which combines the conceptual and 
mathematical framework of the time-dependent Hartree-Fock theory wi th the E C 
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inherent in zeroth-order time-independent Kohn-Sham D F T . Becke has shown that 
averaging H F and D F T total energies leads to a more accurate description of a 
representative class of small molecules than either method alone (17). One might 
expect, therefore, that averaged zeroth-order eigenvalues could also lead to i m 
proved higher order quantities needed in the calculation of (hyper)polarizabilities. 

The difference between the H F and density-functional eigenvalues is discussed 
in Section 2. The working equations to solve the first-order T D H F equations are 
described i n section 3. Section 4 describes the molecules and the corresponding 
atomic Gaussian basis sets used in both the H F and the local-density-functional 
( L D F ) S C F calculations. In section 5, the results of the application of the present 
method to the selected molecules are presented and compared wi th experimental 
and other theoretical results. Section 6 contains the conclusions of this preliminary 
investigation. 

1. O n e - E l e c t r o n E q u a t i o n s 

Quantum-chemical methods begin with an expression for the total energy, 

E = E1 + Ec + E x c , (1) 

which can be divided into three parts. The term, E1 is the one-electron contri
butions to the energy, which includes the kinetic energy, the nuclear attraction 
energy, and the energy caused by external fields. The Coulombic energy of a l l the 
electrons Ec is naturally expressed in density-functional form, 

Ec = J pijLMt.2)d3r1d?r2l{2r12) = [p\p). (2) 

The remainder EXc l s called the exchange-correlation energy. 
In both H F and D F T , the density is the sum of the magnitudes squared of the 

one-electron orbitals, 

p(r) = 5>.*:(l)*.(l0- (3) 
a 

where na is the occupation number (0 or 2 herein) of the ath orbital <^a(r). These 
one-electron orbitals may be approximated as a linear-combination-of-Gaussian-
type-orbital ( L C G T O ) expansion on each atom, 

* . ( r ) = £ < ? 0 A ( r ) . (4) 
t 

Thus the density can be expressed as the product of the L C G T O density matr ix 
and the set of orbital basis-set pairs, 

p(r) = ^ A A O W r ) , (5) 

where 

a 
(6) 
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The optimal L C G T O coefficients axe found by varying the total energy expression 
with respect to each coefficient in each occupied orbital . This variation leads to 
the one-electron equations, 

IK + V c ( i ) + VXCa(r)} CMt) = tab £ (7) 
* j 

where hx contains the kinetic-energy operator, the nuclear potential, and the ex
ternal electromagnetic potential. The variation leading to the Coulomb potential 
Vc can be rewritten as a density-functional variation, 

Similarly in density-functional theory, 

SEXc 

as a consequence of the Kohn-Sham theorem (18). H F is not a D F T , and thus the 
exchange potential is nonlocal. The possibility that the XC potential is nonlocal 
is indicated by an orbital-dependent subscript in equation 7. One consequence of 
this difference is that the eigenvalue matrix eab can always be diagonalized in D F T , 
but must contain off-diagonal terms in H F for certain open-shell systems (19). 

In D F T al l electrons see the same local one-electron potential. In H F the occupied 
orbitals experience individual potentials due to the N — 1 other electrons while 
the v ir tual orbitals experience a potential due to al l N electrons. This causes the 
eigenvalue difference between the H O M O and L U M O to be underestimated in 
D F T and overestimated in H F . 

The (diagonal) eigenvalues are very important because they are used in the 
denominators of perturbation theory. The eigenvalues approximate only to zeroth 
order the energetics of electron rearrangements in both theories. In D F T the eigen
values are the derivatives of the total energy with respect to occupation number 
(20). In H F the eigenvalues approximate these rearrangements v i a Koopman's the
orem (21). In both theories a more accurate calculation of electronic rearrangement 
energies requires proper treatment of relaxation, i.e., an S C F calculation on both 
the in i t ia l and final states ( A S C F ) . 

For closed-shell molecules the lowest energy electronic excitation involves trans
fer of an electron from the H O M O to the L U M O . A l l other things being equal, this 
excitation would be expected to be the dominant process in perturbation theory 
due to its smallest energy denominator. Neglecting relaxation, this excitation can 
be divided into an ionization from the H O M O followed by electron capture into the 
L U M O , i.e. the difference between the ionization potential (IP) and the electron 
affinity ( E A ) of the molecule. D F T underestimates this "band gap" (22,23), while 
H F overestimates i t . This can be seen by comparing the relevant quantities for 
CSQ . The experimental IP is 7.61 eV and the experimental E A is 2.65 eV (24). The 
Perdew-Zunger local-density functional ( L D F ) (25) C 6 0 H O M O and L U M O eigen
values are -5.94 and -4.26 eV , respectively (26). The H F C 6 0 H O M O and L U M O 
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eigenvalues are -7.97 and -0.65 e V , respectively (27). Thus the L D F , experimental, 
and H F "band gaps" of molecular axe 1.68, 4.96, and 7.32 e V , respectively. 

Higher order terms in perturbation theory can be combined into lower-order 
terms to have the effect of moving the eigenvalues into closer agreement wi th the 
corresponding experimental energies (28). Thus one can often improve low-order 
perturbation theory results by replacing the H F eigenvalues wi th experimental 
excitation energies. The bracketing nature of D F T and H F eigenvalue differences 
between occupied and virtual orbitals suggests that replacing the H F eigenvalues 
by the the average of H F and D F T eigenvalues might similarly improve the results 
of low-order perturbation theory, without resorting to experimental quantities. 

2. P e r t u r b a t i o n T h e o r y 

The elements of the linear polarizability tensor a are obtained as 

« «6 ( -«a ; « t ) = - r r [ A ( W ) ( W t ) ] ; a,b = x,y,z (10) 

Where, the perturbation h£)(= fia) is the ath component of the dipole moment 
matrix and 

D W ( w B ) = CM(w a)nC7( 0>t + C^nC^(-ua) (11) 

is the first-order density matrix . The perturbed eigenvector matr ix C^1) is obtained 
from the iterative solution of the first-order T D C P H F equation 

^W(wB)C7( 0) + f ( ° )CW(w. ) + uSWCW{ua) = S ,(°)C f(°)e(1)(a;a) + SMCMfa)*0) 
(12) 

subject to the orthonormalization condition 

CM(u>a)n&0) + C^nC^(u;a) = 0 (13) 

The perturbed eigenvector matrix CM(ua) can be written as 

C W ( w . ) = C P W f o ) (14) 

where the transformation matrix i?( 1)(cj a) is defined as 

(15) 
i % H = - i % H 

and the M O basis Fock matr ix , G M ( w 0 ) is defined as 

GM(w„) = C( 0>t* ,W(W a)C(°> (16) 

The first order F matr ix has the structure 

F ( D ( W o ) = hW + D(D(w.) [2J - K] (17) 

Where, J anad K are the two-electron Coulomb and exchange integrals. In the 
present formulation, it is assumed that the two-electron integrals (as well as the 
atomic overlap integrals, S) are not affected by the external perturbation. 
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The flow of the first-order T D H F calculation can be written as: jP( 1)(w a) (= AC1) 
first i terat ion)—• —> Rfl) —> C M —t D^)(LJa) unt i l the convergence of 
DM(u>a) and therefore of R^)(LJa). 

It is clear that apart from the atomic integrals ( fcW, J and K ), the only quan
tities needed to obtain the first-order density matr ix are the zeroth-order eigen
values, e°, (in equation 15) and the eigenvectors, (7(0) (in equations 11-16) which, 
in the T D C P H F formulation are obtained from the usual S C F H F calculation. In 
the present H F - D F T formulation, we replace the H F e° of equation 15 wi th the 
average of the H F and L D F eigenvalues. 

Once the first-order transformation matr ix , i t f 1 ) , M O basis Fock matr ix and 
the eigenvalue matr ix et1) (diagonal blocks of Gt 1 ) matrix) have been obtained self-
consistently, the elements of the first-hyperpolarizability tensor, /3 are calculated 
as 

= -Tr[n{R(-coa)G(ub)R(u>c) + R(-ua)G(u>c)R(u>b) 
+ R(u>b)G(uc)R(-u>a) + R(ub)G(-ua)R(u>c) 
+ R(uc)G(-u>a)R(cob) + R(u>c)G(u>b)R(-ua)}} (18) 

- Tr[n{R(-ua)R(ub)e(u>c) + R(-ua)R(uc)e(ub) 
+ R(ub)R(u>c)e(-"a) + R(ub)R(-ua)e("c) 

+ R(u>c)R(-u>a)e("b) + R(u>c)R(u>b)e(-ua)}} 

where, 
= + w c (19) 

The ful l derivation of equation 9 has been given previously {29). In it the super
script indicating the order of perturbation (first in this case) has been droped for 
the sake of simplicity. 

The experimentally useful quantities reported in the tables are: 

< a > =^Z)a" ;
 i = x>y>z (20) 

t 

In the above equation, 

3 

3. S C F Calculations 

The experimental geometry of the three molecules as listed in Ref. 4 was used 
in the present calculations. The Hartree-Fock calculations were performed by the 
P H O T O N system of electronic structure program (30) runnning on I B M RS/6000-
550 and Silicon Graphics I N D I G O machines. The L D F calculations were performed 
by the L C G T O - D F code (31). In the present implementation of the above de
scribed strategy, the zeroth-order eigenvalues obtained from each of the H F and 
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L D F calculations are read from separate files and averaged. H F and L D F one-
electron orbitals are largely determined by the orthogonality constraints and differ 
very l i t t le (32). Thus, consistent with our desire to make min imal changes to exis
tent technology, the zeroth-order H F eigenvectors and average of the zeroth-order 
H F and L D F eigenvalues were input to the higher-order calculations. 

Almost identical Gaussian primitive orbital basis sets were used in both the 
H F and L D F calculations. The only difference was that a s ixth d r 2 - function in 
each d primitive-basis-set shell was not used in the L D F calculation. The L D F 
calculations require two additional basis sets to fit the charge density and exchange-
correlation energy density (33). The primit ive basis sets for H , C , 0 , and F were 
the 6s, l l s / 7 p , 12s/7p, and 12s/7p bases, respectively of Ref. 34. Each set of 
orbital exponents were divided into two groups, a core and valence set. The core 
set was contracted according to an atomic L D F calculation. The valence set was 
left uncontracted. The contraction schemes for H , C , 0 , and F were 1,4; 2,3/1,2; 
2,3/1,2; and 1,5/1,4; respectively, where the slash separates angular momenta, and 
for each angular momentum the first number gives the number of core contractions 
and the second give the number of uncontracted diffuse functions. The polarization 
function exponents for H , C , 0 , and F were chosen as 1.0, 0.6, 1.2, and 1.3 atomic 
units (a.u., i n this case a 2 ) , respectively. 

The fitting basis sets—required only for the L D F calculations—were for the most 
part scaled from the orbital basis set. A l l s orbital exponents were scaled by 2 and 
2/3 for the charge density and exchange-correlation basis sets, respectively, and 
used without contraction. Three r 2 fitting functions with exponents that were 
double the th i rd , fifth, and sixth most diffuse p exponents were used in the the 
charge density fitting basis of 0 . Similarly, three r 2 f itting functions wi th exponents 
that were double the second, fourth, and sixth most diffuse p exponents were used 
in the the charge density fitting fitting basis of F . In both fitting basis sets for H , 
a p exponent of 1.0 a.u. was used. In both fitting basis sets for C , five p and d 
exponents of 0.25, 0.37, 0.7, 2.0, and 5.0 a.u. were used. In both fitting basis sets 
for 0 and F , five p and d exponents of 0.1, 0.3, 0.6, 2.0, and 5.0 a.u. were used. 

4. Application to H 2 0 , H F , and C O 

The results of the present calculations are listed in Tables 1 - Tables 3. Also 
listed in the tables are the singles and doubles coupled cluster (triples) [CCSD(T)] 
(4) and gradient-corrected D F T using finite fields D F T - F F (7) theoretical results 
along wi th the available experimental data for comparison. 

There is good agreement on the linear polarizabilities, a , of these three molecules 
among a l l methods. Consistent with our analysis that D F T underestimates the 
H O M O - L U M O gap, the D F T - F F values are consistently slightly higher than both 
C C S D and experiment. For the three molecules studied, the present method shows 
excellent agreement with the experiment and the C C S D ( T ) results for H 2 0 and 
C O . For the H F molecule, the present method underestimates the spherically av
eraged polarizability value, < a > , by about 20%. In fact, the calculated azz value 
of H F are in excellent agreement with the experiment and also wi th other theoreti
cal calculations. However, the perpendicular components, axx and a y y , are heavily 
underestimated, by almost a factor of 2. The reason for this apparent discrepancy 

 A
ug

us
t 1

5,
 2

01
2 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e:
 M

ay
 5

, 1
99

6 
| d

oi
: 1

0.
10

21
/b

k-
19

96
-0

62
8.

ch
00

9

In Nonlinear Optical Materials; Karna, S., et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1996. 



9. DUNLAP & KARNA Combined Methods To Calculate Optical Properties 171 

Table 1. Comparison with literature values of the static linear and nonlinear optical 
properties for H 2 0 . 

Molecule H 2 0 

Method C C S D ( T ) D F T ( F F ) P W E X P 

<**x (a.u.) 9.6362 10.748 7.55 9.55 
aw (a.u.) 10.02 10.532 10.28 10.31 
<*« (a-u.) 9.79 10.370 8.53 9.90 
< a > (a.u.) 9.79 10.550 8.79 9.81 

Pzzz (a.u.) -13.7 -11.91 
Pzxx (a-U.) -6.2 2.90 
Pzyy (a-U.) -10.2 -22.90 
0|| (a.u.) -18.0 -19.56 -22±6 

C C S D ( T ) : Coupled Cluster (Triple excitations) (4). 
D F T ( F F ) : Density Functional Theory using Finite-Fields (7). 
P W : Present work—average H F and L D F eigenvalues. 
E X P : Experimental work cited in Refs. 4 and 7. 

Table 2. Comparison with literature values of the static linear and nonlinear optical 
properties for H F . 

Molecule H F 
Method C C S D ( T ) D F T ( F F ) P W E X P 

axx (a.u.) 5.3398 6.251 2.92 5.08 
aw (a-u.) 5.3398 6.251 2.92 5.08 
<*zz (a-u.) 6.4378 6.764 6.18 6.40 
< a > (a.u.) 5.71 6.422 4.01 5.52 

Pzzz (a.u.) - 9.62 -15.06 
Pxx* (a.u.) - 1.27 -1.50 
0|| (a-u.) - 7.30 -10.84 -10.9±0.95 

in the values of ctxx and ctyy for H F is not clear at this moment, but i t should 
be noted that our orbital basis sets have been selected only for their abil ity to 
accurately reproduce the total uncontracted L D F energy of the isolated atoms. 

There is much less data with which to compare our first hyperpolarizabilities, ft. 
The calculated values for H F and H 2 0 show excellent agreement wi th experi
ment. The /?N values calculated by the present method also show good accord with 
their C C S D ( T ) counterparts, although, there seems to be substantial difference in 
the individual components of /? obtained by the two methods. 

In these studies we have modified our coupled-perturbed T D H F computer code 
to read i n L D F eigenvalues, which are ordered according to increasing energy, and 
then to average these with the H F eigenvalues, which are ordered similarly. This 
average corrects known deficiencies of both methods for eigenvalues about the 
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Table 3. Comparison wi th literature values of the static linear optical properties 
for C O . 

Molecule C O 
Method C C S D ( T ) P W E X P 

«** (a-u.) 11.7332 14.28 
aw (a.u.) 11.7332 14.28 
a„ (a.u.) 15.6522 19.23 
< a > (a.u.) 13.04 15.94 13.08 

Fermi level. This simplest procedure is not opt imal for the highly excited v ir tual 
levels which have considerable dr2 character, which is missing i n our present L D F 
treatment. In fact the number of molecular orbitals in both methods do not agree. 
However, our calculated quantities are unchanged when the highest ly ing orbitals 
included in the H F calculation and missing from the L D F calculation are effectively 
removed from the perturbation-theory calculations by tr ipl ing their eigenvalues. 

5. C o n c l u s i o n s 

Considering the simplicity of the theoretical model presented in this work, the 
calculated results are very encouraging. The results of the three molecules inves
tigated suggest that a combination of D F T and coupled perturbed H F methods 
does in fact yield accurate linear and nonlinear optical properties of molecules. 
The attractive feature of the approach presented here is that the computational 
cost of the perturbation calculations are much less than E C methods, such as 
C C S D ( T ) (4) or M P / 2 (4). The drawback of the method is that it needs two 
separate zeroth-order calculations. Although, for small to medium size molecules, 
this does not present any major bottleneck. As the size of the molecules increases, 
however, the cost of the calculations scale as does H F , instead of the significantly 
less demanding scaling of D F T calculations that use variational fitting (33,35). 
Thus, i t would be desirable to devise a ful l DFT-based method, perhaps similar to 
those of Subbaswamy et a l , so that one can avoid the time-consuming two-electron 
integral evaluation of the Hartree-Fock method. The work in that direction is in 
progress in our laboratories and w i l l be communicated in a forthcoming paper. 
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Chapter 10 

Theory of Nonlinear Optical Properties 
of Quasi-1D Periodic Polymers 

Janos J . Ladik 

Institute for Theoretical Chemistry, Friedrich-Alexander University 
Erlangen-Nuremberg, Egerland Strasse 3, D-91058 Erlangen, Germany 

A theory is described for the effect of static and dynamic electric 
fields on the electronic structure of a quasi-1D polymer. For the static 
field a simple perturbational method and for the dynamic one the 
coupled Hartree-Fock equations were formulated. After introducing a 
basis set the resulting hypermatrix equations have been simplified by 
using the periodic symmetry of the polymer. Thus, all matrices have 
only the rank of the number of basis functions per unit cell. After 
solving the problem one obtains the crystal orbitals in the presence of 
both electric fields. Applying them the total energy per cell can be 
calculated also with correlation. The derivatives of the energy 
according to the field components give the static and dynamic 
(hyper)polarizability tensor elements. Preliminary calculations for the 
static case resulted in much larger polarizabilities than using different 
extrapolation methods from olygomers. Finally, the extension of the 
method for the interaction of a polymer with a laser pulse is shown. 

Non-linear optics has a great practical importance in electrooptics, in optical switches 
and modulators (1,2,3). The discovery of laser has provided the ideal tool to study 
non-linear optical phenomena in molecules and polymers experimentally. 

The theoretical treatment of a molecule or a polymer in the presence of an 
electric field generally and of a laser beam presents a formidable problem. In this 
paper we shall remain within the framework of the Born-Oppenheimer approximation 
(we shall not consider the change of the phonons in the presence of a laser pulse 
because we shall work in a fixed nuclear framework). Further, we shall not take into 
account the effect of the interaction between linear polymers on their polarizabilities 
and hyperpolarizabilities, though both effects are non-neglible (4,5,6). 

We shall not review here the different semiempirical (not very successful) 

0097-6156/96/0628-0174$15.00/0 
© 1996 American Chemical Society 
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10. LADIK Theory of NLO Properties of Quasi-ID Periodic Polymers 175 

calculations on non-linear optical properties of molecules (for a partial review for 
them see the Introduction of (7)). In the ab initio case there are some rather 
successful calculations for static and dynamic polarizabilities and hyperpolarizibilities 
of smaller molecules (8,9,10). It is questionable, however, how well would work the 
perturbational method used by the authors for larger molecules interacting with laser 
light. 

With polymers there is the additional problem that the potential of an electric 
field £ , Er is unbounded and this destroys the translational symmetry of a periodic 
polymer. Because of this difficulty in a larger number of calculations various authors 
have applied different extrapolation methods for the (hyper)polarizibilities starting 
from oligomers with increasing number of units. Only in a few cases has been 
attempted to treat infinite polymers in the tight binding and ab initio Hartree-Fock 
level. The latter calculations use, however, a formalism which is so complicated that 
its application to polymers with larger unit cells seems to be prohibitive (for a review 
see the Introduction of (11)). 

The purpose of the present paper is to present a full theory for static and 
dynamic (hyper)polarizabilities of periodic quasi I D polymers at an ab initio Hartree-
Fock 4- correlation level. The theory wi l l be described at two different levels: 1). 
interaction of an electric field E with a periodic polymer, 2). interaction of a laser 
pulse (taking into account both electric and magnetic field strengths) with a quasi I D 
periodic polymer. 

To be able to formulate the theory one has to treat first of all the problem of 
the unbounded operator Er. If E is homogeneous (which is fulfilled in a good 
approximation within a laser pulse) we can apply following Mott and Jones (12) (see 
also: (11)) the Nabla-operator Vk to a Bloch function 

Vn(k,x.) = eiJ^un(krr) 
(here, as it is well-known un(£,r) is lattice periodic): 

\<Pn(k,z) = ijwn(k.z) + eikzVkun(k,z) = 
( 2 ) 

= i j z q > a ( £ , i ) + eiJ"Vke-iJ"(pn(k,j:) 

Multiplying both sides of equation (2) by -ie£ one obtains after reordering the terms 

-eEj&n(k.£.) = -ieEeikL Vke'ikj:<pn(kf z) + ieE Vkyn(k,z) «) 
If we multiply (3) by a Bloch function belonging to band m with a value k\ we find 
for the matrix elements of the first term of (3) on the r.h.s. 

-ieUm{k',z) \EeikL Vke-**\*n(k,z)) = 
(4) 

= -ieE^dze^^^uJk!', z)Vkun(k, z) 

vanishes unless k'=k. In the latter case the remaining integrand and with it the 
integral is lattice periodic. Since it allows interband mixing (generally m ^ n ) , it 
describes the polarization of the system in the presence of E. On the other hand, the 
second matrix element originating from the r.h.s. of (3) 
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176 NONLINEAR OPTICAL MATERIALS 

( c p ^ x ) I V ± < p a ( 5 ) 
is not lattice periodic. Since, however, this term allows the change of the quasi 
momentum vektor, k'^k, A£=£' -£, this term corresponds to a polarization current. 
Therefore, it has not to be taken into account i f we want to treat theoretically the 
non-linear optical properties of a periodic system (13) which depend on the (hyper) 
polarizabilities (charge redistribution) in a molecule or a chain in the presence of an 
electric field, but not on the movement of charges (current). 

Interaction of Static and Time-dependent Electric Fields with Quasi ID Polymers 

a) Derivation of the Coupled Hartree-Fock Equations. Let us assume that we have 
a homogeneous electric field E, 

E = Eat + £w = Kst + jtzote*"*' + = 

( 6 ) 
Af 

= Eat + £ £ 0 2 c o s ( /not) 

Here £ s t is the static field and in the case of the time-dependent field E^ with 
frequency o> and amplitude EQ we have taken into account also the overtones. A t the 
same time we assume that in this case that no magnetic field H is present, that is 
A=0 (f l=curL4). 

In this case the total Hamiltonian of an n-electron system can be written as 

H = H0 + H; (7) 

where H 0 is the unperturbed Hamiltonian of the n-electron system. The field-
dependent part of H , fT can be expressed, i f we take into account equation (3) (and 
the text after it) as well (6), as 

X.n.E8t.EQ.<*.t) = 

(8) 
= E [ E s t e l k J i i \ e ~ l k r ± + z Q

e l k r i Y ^ ' ^ E 2 C O S ( / N G > T ] ] 

i = l 
One can substitute (7) with (8) into Frenkel's variational principle (14) which 

provides the condition for the existence of a stationary state (see also (15)) 

j=\—~ at / , 6J = o ( 9 ) 

We apply for the field and time-dependent n-electron wave function the Ansatz 

Zn.Est,E0,<*.t) = e-1*tX[[*1U1.E.t.E0.<*.t) (10) 
2=1 

Here W 0 is the total energy of the n-electron system in the field-free case (the 
eigenvalue of H 0 ) , A is the antisymmetrizer and the one electron orbitals in the 
presence of the fields are 
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10. L A D I K Theory of NLO Properties of Quasi-ID Periodic Polymers 111 

flM^,*.,,^,*, t ) = ( P i ( x . ) + c p f ( x i , £ s t ) + 

+ £ [ A ( P l ^ ( x . / £ 0 ) e ^ t
+ A < p ^ ( x i / £ 0 ) e - i - > t ] 

One should mention that the effect of the static field Est one can calculate with 
the help of a modified Fock operator (P0 is the Fock operator belonging to H 0 ) 

F = FQ + Fst , where Fst = -i\e\Esteikz \ e ' i k z (12) 

with the help of simple first-order perturbation theory. In this way one obtains instead 
of 

i V P i ( 1 3 ) 

a shift Aej 8 1 with respect to ef-0) and the correction </?jSt(£,£st) with respect to ̂ ( r ) . 
To determine the effect of the time-dependent-field E^ one has to substitute 

equation (10) with (11) into equation (9), and perform the variation of J with respect 
to the unknown functions A<p+

im and A<p'im, respectively. One obtains in this way the 
coupled Hartree-Fock (RPA) equations for a closed shell system 

[F- ( € J 0 ) + A € f ( £ s t ) ) ± mco] | A ( P l , ( r i / ^ 0 ) > + £|<pi iJ^.E8t) > + 

n 

* E [ ( < ^ ( x 2 , £ S T | ^ A : : i | A < p 5 , r a ( i 2 , £ 0 ) > 2 + h.c.)] | < p ^ ( x 1 , £ s t ) > = 0 
"7 * 1 0 

( i = l , 2 , . . . , J 2 ; / n = l , 2 , . . . , M ) 
(14) 

(15) 
/ / e r e < P i ( r . , £ s t ) = <Pi (x) + < p f ( x . / £ s t ) 

a ^ d R = - i l e l ^ e ^ 1 V ± e " ^ 1 

Further in the case of a quasi I D periodic polymer 

* 0 - E ^ ^ H - ^ k ^ ) ^ ( 1 6 a ) 

J = l X 1 2 

2N+1 7 

^=-1^-E E T - ^ I < 1 6 B ) 

Z J=I a- i |x x £ ; | 

where (2N + 1) is the number of unit cells in the polymer, N a the number of nuclei 
in the unit cel l , Z a the charge of the a-th nucleus and, finally, Rj is the position 
vector of the a-th nucleus in the 1-th cell . 

Inspecting the system of equations (14) one should observe that because of the 
occurrence of the unknown functions Ay?^* in the integrals (last two terms of the 
l.h.s. of (14)) these coupled Hartree-Fock (HF) equations (as the simple H F ones) are 
non-linear and, therefore, have to be solved in an iterative way. 
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178 NONLINEAR OPTICAL MATERIALS 

b) L C A O Approx imat ion for the one-electron wave functions. Introducing a basis 
set (X S

Q (L)} for the whole polymer chain, where X S
Q is t n e s-th basis function in the 

q-th cell , one can write 

+N ffi 

q= -N s=l 

and A < p l „ = £ £c£maUS0)xi(z) <17b> 
q=-Ns=l 

(m is the number of basis functions per unit cell). 
The coefficients Q > s t > s

q (£ s t ) can be obtained by solving the generalized matrix 
equation 

[F0 + F s £ ] ^ ( £ s t ) = 

= f ^ ( £ s t ) = ( e i 0 ,
+ A e f ( £ s t ) ) S d t ( E s t ) 

in the same way as one does in the case of periodic systems in the absence of £ s t 

(16,17,18). [Since F 0 and F s t are, if we use periodic boundary conditions, both cyclic 
hypermatrices, they can be blockdiagonalized and the problem of a long finite or 
infinite chain can be reduced to the problem of mxin matrices. For further details see: 
(17)]. Substituting the expansion (17b) into the coupled H F equations (14) one 
arrives at the hypermatrix equation 

(19) 
(A* B + V 

Here the matrices A and B have the elements 

= <X°r\F- ( e j 0 )
 + Aeiiat (Est) ) ±/nco | Xf> + B?;^,s (20) 

R 0 , g r ± 

2 E E E C^miuCfiStiS(EsC)C^st,vx (21) 
j = l u, v q1,g2 

x<X? ( i , ) X ? ( i 2 ) I I x f (X , ) X ? (X 2 ) > 

and Df!r = -£c^,s(Est)<X°rWs> <22) 

Equation (19) can be rewritten as 
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10. LADIK Theory of NLO Properties of Quasi-ID Periodic Polymers 179 

Aim?- +B+
inp: =n. < 2 3 a ) 

1 • ,m 1' ,m I 

1,m^i,m 1'm^i,m l 
(23b ) 

Since al l the matrices A ^ * and B ^ * occurring in equ-s (23) are in the case 
of a linear chain with periodic boundary conditions, cyclic hypermatrices, they can 
be block-diagonalized with the help of the unitary matrix U [the p,q-th block of U is 
U p > q = 1/(2N+1) exp [ i2*pq] l (17)]: 

iTAljnrc.m + u>B\,muir£rlm = xrni ( 24a ) 

xrBiimxjircim + iTAimmrc: m = t r c . (24b) 

Using the notations A \ m
B D = U + A +

i > m U etc, £ ±
i m = U + C ±

i , m a n d G ^ l T D j we obtain 

AlB
m

D-r. ^ B ^ T . = a. ( 25a ) 

(25b ) 

This system of equations can be reduced easily in the usual way to such 
matrix equations in which each matrix has only the order mxfn. For N - » o o one can 
introduce the continuous variable k=(2irp) / (a(2N+l)) (-x/a < k < x/a) and can 
rewrite equations (25) as 

A;. .<*> + Bl.a(k)riim(k) =Gi(k) ( 26a ) 

B-i,m(k)£?.Jk) +AHk)rita(k) =Sx(k) ( 26b ) 

Putting back the two equations in the hypermatrix form one obtains 

'*;..(*> Bt,a{k)" 

which can be solved at each point k and value EQ to obtain the vectors C i m
q ± ( k , £ 0 ) . 

For this we need the back transformation 

K J k ) •S^k)\ 
S.ik)) 

(27) 

Jk.E) U£*.Jk,E0) 

[Actually U and U + are those blocks of U and U + , respectively, that are necessary 
for the transformations of these vectors]. 

Furthermore from the unitary transformations performed in equations (24) 
it follows (16-18) that 
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Atm(k) 
q=-N 

( 28a ) 

q= -N 
(28b) 

( 2 8 c ) 

Final ly , the L C A O crystal orbitals can be written in the presence of the 
electric fields £ t + £ as 

• ( 2 9 ) 

+ E ( c ; / / n ; s ( i c / £ 0 ) e i ^ > t + C ^ d c ^ e ^ l x ^ x ) 

c) Moeller-Plesset Perturbat ion Theory. After having computed the quasi one-
electron orbitals tp{ and quasi one electron energies %, one can apply (following Rice 
and Handy (8,9)) the M P / 2 expression of the second order correlation correction of 
the quasi total energy for given k, co, t, £ s t , and EQ. In this case the Moeller-Plesset 
perturbation operator w i l l be 

A m -i A a m -i A ,3 

i<j x i j occ u o i<j x i j u u 

&. ( 3 0 ) 

(n = fi(2NH-l) ) where the quasi Fock operators F are defined as 
n 

F(EBt.EQ.v>.t.k) = HN(EstfEof(^fttri) + X ) (2Jj-Kj) ( 3 1 ) 

J = I 

The quasi Coulomb operators and quasi exchange operators Kj are defined in the 
usual way but not with the help of the unperturbed crystal orbitals <pp but with the 
perturbed ones yy Furthermore, 

M 

HN = HN + Y, [Est + ^0^eim"t + e " i / n t t t ) ] eiKjL \e~ikz (32) 
m=l 

( H N is the one-electron operator of the unperturbed polymer). 
With the definition (30), one can derive in the standard way (19) the second-order 
correction to the quasi total energy (for given t, co, £ s t and EQ) 
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10. LADIK Theory of NLO Properties of Quasi-ID Periodic Polymers 181 

E$ (t,u,Est,E0) = 

i ^ x t q , . . ) < M X 2 , . . ) i Y - ( 2 - ^ - 2 ) 1 * ^ ^ ' • •) » * < - v • • > > r 
= J , £ , B € x ( t ) + - € A ( t ) - g B ( t ) 

(33) 
Here E M P

( 2 ) = E M P
( 2 ) (t, co, £ t , EQ), because the perturbed crystal orbitals ^ ( r , ...) and 

quasi one-electron energies 

g r ( t ) = <* J|F|$ J> (34) 

depend on the same variables (this is meant in the argument of the fa, etc. by the 
three points). The k- and m-dependence is expressed by the combined indices I = 
i ,ki,mi etc. Therefore, the fourfold summation includes the threefold integration over 
k ( because of the conservation of momenta kj+ kj= k a + k b ) ; for the details, how 
one calculates the matrix elements <fa 7p} \ <pA £ B > occurring in (33) see again 
(19)). 

After having calculated E M P
( 2 ) , we can write for the total energy with second-

order correlation corrections 

E(u,Est,EQ) = 

T a 

(35) 
Here E H F ( k , t) is the quasi Hartree-Fock total energy calculated in the presence of 
and ^ a t a certain value of k and at time t. 

The development of the program package for the rather complicated formalism 
developed here and in the previous subsection is in progress in our Laboratory. 

d) The Calcu lat ion of the Polarizabil it ies and Hyperpolarizabi l i t ies . Having the 
total energy (35) (following in this point also Rice and Handy (8,9)), we can formally 
express it in the presence of the electric field 

E = Est + £w = Est + 5 ^ J £ 0 ( e i i n w t + e" i / n w t ) 
m-i 0

 ( 3 6 ) 

M 

= Est + £ £ 0 c o s ( / m o t ) 

as 

E(u,Est,E0) = E$ + E™ + ±;Est + r c c ( G > ) £ + 
(37) 

+ —E*$EE + -^jE*yE2E + • 
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where E H F
( 0 ) and E M P

( 2 ) are the Hartree-Fock and M P / 2 energies of the polymer per 
unit cell in the absence of the field and 

(38) 

is the part of the induced dipole moment due to the static field. It can be easily 
calculated with the aid of the expression 

,k)] 

(39) 

corr. corr. 

where the dipole moment operator p.x = \t\r{ and corr. corr. stands for terms 
coming from taking into account correlation corrections in the wave function (9). 

Using expression (35) one can apply the time-independent Hellmann-
Feynmann theorem 

dE (40) 

(for the conditions of its validity see (9,16)). Here E is the total energy (see equation 
(35)), 3> the many electron wave function [see equation (10)] and H the full perturbed 
Hamiltonian [see equations (7,8)]. Following Rice and Handy (8,9) one can expand 
the quasi total energy (together with the (i-d/dt)-term occuring in FrenkeFs 
variational principle) as a function of E s t and E^. One obtains in this way 

dE (41a) 

a ^ ( 0 ; 0 ) = - d2E (41b) 

P ^ v ( 0 ; 0 , 0 ) 
dEstiXdEst^dEstf, 

( 41c ) 
E=SL 

a* 1 * ( - c o ; (o) c o s (a> t ) = - &E (42a) 
1 E=Q. 
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- | p ^ V ( 0 ; - ( a , C D ) + ^ p ^ v ( - 2 ( 0 ; G ) / 0 ) ) c o s ( 2 o ) t ) 

(42b) 
a 3 £ 

and 

P A * M - u ; 0 , a > ) c o s ( c o t ) = - d 3 E 

dEst.»dE».xdE».* 
( 4 2 c ) 

In these equations E,^ and £ , > x , respectively, are the /x-th component of ^ 
and the X-th one of respectively. The series expansion indicated above provides 
also the symmetry relation (9) 

P ^ V ( 0 ; < D , - G > ) = p V ^ ( G ) ; 0 / O ) ) < 4 3 > 

There are, of course, more combinations of o) in p possible, but they are not 
measurable at the present time (9). 

Formally one can write also for the elements of 7 similar expressions as 
fourth derivatives of E . For instance, it can be proven in a similiar way as described 
above (8,9) 

Y ^ V K ( - o ) ; 0 / 0 / a ) ) c o s ( a ) t ) = ^ 
dE8t^dEstifE„tkdE„§ 

(44) 

For the numerical implementation of these formulae for polymers one has to 
use again the procedure recommended by Rice and Handy (8,9) to achieve 
computational simplifications. The most efficient computational algorithm for 
polymers can be found, however, only after some numerical tests have been 
performed. 

Interaction of a Quasi-ID Polymer with a Laser Pulse 

In a previous paper (7) this problem was already treated, but the paper contains a 
larger number of typographical errors and several inconsistencies. Further, the lattice 
periodic part of the operator Er was not introduced. Since in the previous section 
(starting from equation (6)) a rather general formalism was described, it is easy to 
extend to the case of a laser pulse. 

Let us assume to have a laser pulse of Gaussian shape, 

E = Ene~*2t'2 where a 2 = 
0 / rp\2 

that is in time T/2 the value of £(t) decreases to EJt (see Figure 1). Further, in this 
case £ s t = 0 and A ^ 0. 
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F i g . l The Gaussian shape of a laser pulse with a peak electric field strength 
of EQ. (Adapted from ref (7)) 

Further we can write 

m=l m=l 
Using the expression 

c ot 

(Coulomb gauge (20)) one obtains for V (taking into account equation (3). 

-ikz 2/770) ImA*e2 

(45) 

(46) 

(47) 
=1 m=l 

If one introduces the generalized momentum £-(e/c)4(t,w) to take into account the 
magnetic field #(t,o>) one obtains for H ' instead of equation (8) 

H,(rll . . . ,z.n,EQ,AQ,<>>, t) = e~*2t'2 x 

M in 

£ i F i L 0 * c 0 c Q 1 

The n-electron wave function w i l l be in this case 

, x n , t , u ) = e " i V o t I J $ i ( i ^ f ( o ) 

(48) 

(49) 

as before, but the definition of the one-electron orbitals in the presence of the 
electromagnetic field changes to 

 A
ug

us
t 1

6,
 2

01
2 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e:
 M

ay
 5

, 1
99

6 
| d

oi
: 1

0.
10

21
/b

k-
19

96
-0

62
8.

ch
01

0

In Nonlinear Optical Materials; Karna, S., et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1996. 



10. LADIK Theory of NLO Properties of Quasi-ID Periodic Polymers 185 

x [*9l.(zi.E0.A0)ela*t e ( t e t ' ) + A » i . - ( i i , 3 , „ a 0 ) e - i ~ t e ( t e t / ) ] 

(50) 
Here W 0 is again the eigenvalue of Ho and 

ectetO = { x i f -ioo(|) . t ' . ioo(. 
10 otherwise 

(51) 

Substituting again H = H „ + H ' with the definition (48) of H ' and (49) with the 
definition (50) of the £ r s into equation (9) (Frenkel's variational principle) one 
obtains instead of (14) the generalized coupled H F equations 

[ ( F 0 - e j ° > ± m » | A < p l r o ( i , £ 0 , ^ 0 ) > + J f i * e - « 2 t 2 | <p,> + 

+ 4 S e ft |*e <p,> + |2 ̂  + ^ l^^jl e - 2 " 2 = 0 
|2 tfetd + |A<pl,m>j 

(52) 
Here F 0 is^the^fieljj free Fock operator of the polymer (equation 16a) and the new 
operators Q, , Q 2 , Q 3 and n* are defined as follows 

ft -
2C 

(53a) 

_ 1 
2C 2KI 2 e 4 2 e - 3 i _ ! 

- 3 i 
*v2 e J (53b) 

ft ^ 2 C : 
21 A) 12 

2 i + 4 (53c) 
4 2 

A (53d) 
and fr has the same definition only in the first and third terms on the r.h.s. AQ and AQ* 
are exchanged. 

If we use again an L C A O expansion for the we obtain again the 
hypermatrix equation (19) (only the r.h.s. of it wi l l stand (D* D{f [t means 
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transposed] ) with the somewhat changed definition 

A^r.s = <X°r\F0 ~ € J 0 ) ± ™ > | X J > + 4 

+ BllSr.. + e-«2^/2<x,|2i?e(^ + ft) |X?> 
The matrix elements of the matrix B 0 ±

i m are the same as in equation (21) only instead 
of C\ s t s (E s t ) - s etc. (because now E^=G) the C q ( 0 )

u - s should stand. Final ly , the 
components of the vectors are now defined as 

D&'JtcfiUx'rlhxP ( 5 5 ) 

s=l 
(The coefficients C q ( 0 )

i s are the eigenvector components of the Fock operator 
of the unperturbed (E s t =E c d =0) polymer). The new matrices A ^ * are also cyclic 
hypermatrices and can be block diagonalized in the same way as before. Therefore, 
one obtains finally again equation (27), only on the r.h.s. stands now 

Equation (29) which defines the one-electron orbitals tp{ is nearly the same as 
before only instead of C u t ; s (k ,2 i s t ) C ( 0 )

i s occurs and the coefficients C i m s
q ± depend 

now also on AQ. The expressions in point b) and c) remain the same only instead of 
£s t the quantities depend on AQ. T O be able to calculate the (hyper)polarizibilities 
(point d) of the previous section) one has to introduce again in all equations of this 
section a fictious £ s t again. 

Conc luding Remarks 

As has been mentioned before the programing of the rather complicated formalism, 
described in the previous two sections, is in progress. The calculation of for 
simple infinite polymers as poly(H 2 ) , po ly (H 2 0) , poly(LiH) have given values which 
are much larger than those obtained by different extrapolation procedures [for details 
see (11)]. Further calculations for ( a Z Z j 4 ) / ( 2 N 4 - l ) , the polarizability per unit cell of 

poly (yO\) and poly (yCH2\s) have shown similar results [see (21)]. 

This indicates that to find polymers with high polarizibilities and hyperpolarizabilities 
(both static and dynamic) one really has to apply solid state physical methods. 

After finishing the programing of the new methods and performing the 
corresponding calculations one expects to be able to predict new polymers with 
advantageous non-linear optical properties. On the other hand, certainly one would 
obtain a much deeper insight into the interaction of a periodic polymer with an 
electromagnetic field (laser light), than it was possible until now. 

On the theoretical side we plan to extend the methods for the case of 
interacting chains. If the arrangement of the units is such that there is a periodicity 
also in the second direction, one can use the same formalism as before only instead 
of k one has to introduce a two-component crystal momentum vector k and the crystal 
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orbitals w i l l describe a quasi-2D system. Otherwise, one has to take into account the 
interactions between chains with the help of other methods (22). 

To take into account the effect of phonons on the (hyper)polarizibilities one 
can extend the methods of Bishop and Kirtman (5,6) to quasi -ID- and quasi-2D 
periodic systems. 

Final ly , one should mention that the question can be raised whether for the 
proper treatment of the interaction of an electromagnetic field with a molecule or 
polymer is it not necessary to quantize also the field and do not treat it classically. 
Since, however, in the case of laser pulses the field strengths are large, the second 
quantization most probably would not change considerably the results. 
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Chapter 11 

Model Hamiltonians for Nonlinear Optical 
Properties of Conjugated Polymers 

Z. G. Soos1, D. Mukhopadhyay1, and S. Ramasesha2 

1Department of Chemistry, Princeton University, Princeton, N J 08544 
2Solid State and Structural Chemistry Unit, Indian Institute of Science, 

Bangalore 650012, India 

Quantum cell models for delocalized electrons provide a unified 
approach to the large NLO responses of conjugated polymers and Π-Π* 
spectra of conjugated molecules. We discuss exact NLO coefficients of 
infinite chains with noninteracting π-electrons and finite chains with 
molecular Coulomb interactions V(R) in order to compare exact and 
self-consistent-field results, to follow the evolution from molecular to 
polymeric responses, and to model vibronic contributions in third-
harmonic-generation spectra. We relate polymer fluorescence to the 
alternation δ of transfer integrals t(l ± δ) along the chain and discuss 
correlated excited states and energy thresholds of conjugated polymers. 

I. Introduction 

Nonlinear optical (NLO) coefficients describe the response of an electronic system to 
radiation. Second and third-order coefficients %Q) and %0) a r e quadratic and cubic, 
respectively, in the applied electric field E(co,t). Formal developments in the dipole 
approximation are widely available(l,2) as sum over states (SOS) expressions and tend 
to represent different perspectives. Physicists and engineers focus on diverse 
possibilities afforded by different polarizations or frequencies of applied fields or on 
identifying higher-order responses. Chemists and materials scientists often concentrate 
on the electronic properties of the system, either to evaluate or to optimize NLO 
responses, while spectroscopists have devised ingenious new NLO techniques for 
extracting microscopic information. W e w i l l discuss NLO responses of extended 
systems such as conjugated polymers(3,4) in terms of π-electron and related quantum 
cell models(5-8). Several other contributions to this book are devoted to molecular 
responses and the challenges of quantitative N L O calculations. Huckel theory for 
conjugated hydrocarbons and tight-binding descriptions of metals illustrate simple 
models that combine physical insight and computational ease. Models remain a powerful 

0097-6156/96/0628-0189$15.50/0 
© 1996 American Chemical Society 

 A
ug

us
t 1

5,
 2

01
2 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e:
 M

ay
 5

, 1
99

6 
| d

oi
: 1

0.
10

21
/b

k-
19

96
-0

62
8.

ch
01

1

In Nonlinear Optical Materials; Karna, S., et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1996. 



190 NONLINEAR OPTICAL MATERIALS 

Figure 1. Idealized planar backbones of conjugated polymers. 
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11. SOOS ET AL. Model Hamiltonians for NLO Properties 191 

approach to novel N L O phenomena, as discussed below, because they unify, clarify, 
and quantify behavior in extended systems that are otherwise quite different chemically. 

Physical considerations are the primary motivation for models, although the 
possibilities of exact results and computational convenience are also important. The 
quantum cell models in Section II include rc-electron models for conjugated molecules or 
polymers; Hubbard and extended Hubbard models for h igh -T c materials, for inorganic 
complexes, and for organic ion-radical and charge-transfer salts; and exchange-coupled 
magnetic insulators containing spin-1/2 sites. Models pose well-defined mathematical 
problems that are central to collective phenomena. The statistical physics of magnetism, 
for example, is closely related to exchange-coupled networks of spins with dipolar and 
other interactions whose realizations in inorganic salts identify materials of special 
interest. Mathematical techniques are freely transferable between different fields and 
extended models have evolved into separate areas of research. 

The connection of successful models to more fundamental descriptions is 
important theoretically. Such derivations are more suitable for molecules than for 
extended systems. The advent of powerful computers and efficient algorithms several 
decades ago enabled quantum chemists to include al l electrons, or at least al l valence 
electrons, in increasingly large molecules. Semiempirical and ab initio self-consistent-
field (SCF) methods proved to be well suited for molecular geometries or the ground-
state potential surface. Band structures are the corresponding applications to solids. 
These all-electron studies tend to complement models, which focus on optical, electric, 
or magnetic excitations and start with the observed geometry. 

The Pariser-Parr-Pople (PPP) model for conjugated hydrocarbons(9,10), for 
example, was developed for 7C-7T* spectra(l l ) and extends Huckel theory to include 
Coulomb interactions V(R) . Similar n-n* spectra and N L O responses(12) of conjugated 
polymers are experimental observations that imply prominent rc-electron contributions 
quite independently of theoretical justifications for c-n separability. All-electron and 
model calculations of N L O properties pose different challenges associated with excited 
states. N L O coefficients are sums over excited states and transition moments, quantities 
that are not readily measured directly or evaluated at the S C F level. The need for 
configuration interaction (CI) is widely recognized for correlations, but the proper 
balance between rigor and truncation in ab initio calculations of N L O coefficient 
remains to be worked out. A n adequate basis is clearly a prerequisite for real molecules. 
The finite basis of models allows exact solutions for oligomers, as discussed in Section 
III. The evolution of N L O responses from oligomers to bands for noninteracting models 
is a current topic summarized in Section IV. 

Our discussion of N L O responses of model Hamiltonians illustrates a variety 
of applications to conjugated polymers, including exact results, symmetry arguments, 
and analysis of SOS expressions as well as coefficient calculations. The generality of 
half-filled quantum cell models is summarized in Section II. The P P P model provides a 
unified description of the conjugated polymers in Figure 1, which are among the most 
extensively studied. Exact N L O coefficients of interacting models are compared in 
Section III with approximate results. Their size dependencies are found in Section I V for 
noninteracting models and in excitonic models based on molecular crystals with reduced 
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derealization. We relate in Section V the photophysics of the polymers in Figure 1 to an 
excited-state crossover involving the lowest singlet excitation, S i , and discuss in 
Section V I how to model vibronic or conformational contributions. 

I I . H u c k e l , H u b b a r d , and P P P M o d e l s 

Quantum cell models are widely applied to low-dimensional extended systems, where 
their physical faithfulness is far less demonstrable than in molecules. W e comment 
briefly of their justification and parametrization in conjugated molecules after introducing 
models whose N L O responses are our principal topic. We consider electron transfer 
integrals t ( R p p 0 between adjacent or bonded sites p,p' in Figure 1, vanishing t's 
between more distant neighbors, and use the zero-differential-overlap ( Z D O ) 
approximation(ll) to reduce the potential V(p,p') to one and two-center integrals. W e 
obtain(8) H =Ht + HJJ + Hy + Hs for any conjugated molecule or polymer. / / t is the 
usual Hucke l model for noninteracting electrons, H\j is the on-site or Hubbard 
interaction, H\ describes intersite interactions, and Hs describes systems with different 
kinds of sites. Their second-quantized expressions for an N-site linear system are 

N-l 
Ht = ^t(Rpp+l)[a^aap+la-^a^+l(Japa] 

P=\,(J 

Hv = ] T -1 ) /2 
p 

' d) 
Hv = 2 M ^ V ( ' P I P , ^ Z P ~ N P ^ Z P , ~ N P ' > > 

pp' 

Hs = 
P 

The fermion operators apa + , apo create and annihilate an electron with spin a at site p, 
n p is the number operator, z p is the charge at p when n p = 0, and the primed sum 
excludes p = p'. Intersite interactions V(p,p') typically depend on the distance R p p - and 
can be either short or long-ranged. The total spin S is conserved, as expected for 
nonrelativistic Hamiltonians. The models above include noninteracting Huckel or tight-
binding systems as well as interacting Hubbard, extended Hubbard, and P P P systems 
whose U » t limit corresponds to Heisenberg spin chains. 

Conjugated hydrocarbons or polymers are often half-filled systems, with one 
electron per site, so that solutions of Eq. ( l ) with N e = N electrons are sought. They 
ususally have common on-site U = V(0) and site energy e = 0 at al l p, which amounts 
to taking energies relative to Huckel's a integral. The resulting half-filled chains are 
bipartite, with alternancy symmetry in Huckel models or electron-hole (e-h) symmetry 
(13,14) in Hubbard or PPP models. The Ohno potential(15) for P P P models is 

V{p9p') = V(Rpp,) = e2/(p2+R2
pp,)] (2) 
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11. S O O S E T A L . Model Hamiltonians for NLO Properties 193 

V(0) = 11.26 eV is taken from the ionization potential and electron affinity of carbon and 
leads to p = 1.28 A for the size of the quantum cel l , while an unshielded Coulomb 
potential is found at large R. The systematics of n-n* spectra motivated the P P P model 
with the Ohno potential and t(Ro) = -2.40 eV taken from benzene. 

Transferable parameters, a major goal of P P P theory, has been achieved for 
hydrocarbons(16,17) and partly so for heteroatoms(18,19), although several related 
parameter sets are used. The Ohno potential and distance dependence of t ( R p p 0 in Eq. ( l ) 
completely fix the P P P Hamiltonian for the conjugated polymers in F i g . 1; atomic S i 
leads(20) to larger radius p. The P P P model is a special case of extended Hubbard 
models with fixed potential, Eq.(2), rather than arbitrary U , V i , V 2 , . . . parameters in 
Eq. ( l ) taken from experiment. We note that the distance dependencies of t(R) or V(R) 
couple electronic and vibrational degrees of freedom, with the latter restricted to 
backbone motions in conjugated systems. The Su-Schrieffer-Heeger (SSH) model(21), 
for example, is an adiabatic approximation for Ht with linear t(R) and a harmonic lattice. 
It involves only C - C stretches, while C C C bends(22) also appear in P P P models 
through V(p,p'). 

In addition to the excitation spectrum, N L O coefficients require transition 
dipoles. The Z D O approximation for the dipole operator is 

where r p is the position of site p, n p-Zp is the charge operator, and the origin is arbitrary 
for a neutral system. Matr ix elements <Xlp, lY> over the eigenstates of E q . ( l ) 
completely f ix the largest (electric dipole) response. Large transition dipoles in 
delocalized systems such as organic dyes dominate N L O responses. The contributions 
of the more numerous core electrons are roughly additive(23) in N , while the exaltation 
of 7C-electrons increases(24) far more rapidly. N L O applications are particularly wel l 
suited for P P P models developed for 7C-7U* spectra of conjugated molecules, whose 
parameters(12) also hold in conjugated polymers. 

The scope of quantum cell models(5-8) has several advantages. Exact results 
are known for special cases such as Hubbard chains with uniform transfer integrals t, 
for Heisenberg chains with uniform exchange J ~ 2 t 2 / U , and for other linear spin or 
donor-acceptor models. These provide guidance for the alternating backbones of the 
polymers in Figure 1. Moreover, different physical realizations often sample different 
parameter regimes. Conjugated molecules or polymers have comparable V(0) and band 
widths 4t ~ 10 eV. Ion-radical organic salts are more correlated, with U ~ 1.5 eV and 
band widths 4t ~ 0.5-0.8 eV ; in addition to N e = N , they illustrate N e = N/2 , 2N/3 , or 
other fillings. The band width is negligible in magnetic insulators, which for N e = N 
have a localized spin at each site. The strong-correlation limit of Eq. ( l ) reduces for N e = 
N to covalent valence bond ( V B ) diagrams(25), with n p = 1 at every p. Ionic V B 
diagrams are also needed for the complete basis and these many-electron functions 
explicitly conserve the total spin S. Slater determinants, with fixed S z , of molecular 
orbitals also provide a complete basis for Eq.( l ) that is best suited for band or weakly-

(3) 
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correlated systems. Continuum limits(26,27) of quantum cell models have also been 
extensively studied, but we wi l l not discuss field-theoretical results here. 

We return now to derivations of Eq. ( l ) for conjugated molecules, a major 
concern of early work( l 1) on the Z D O approximation in P P P or Hubbard models, and 
to accurate evaluation of parameters such as t(R). Comparisons to all-electron 
calculations(28) are inherently restricted to small molecules such as butadiene, or 
perhaps hexatriene, whose n* and a * excitations are similar. Larger systems have 
lower-energy n~n* excitations around 2-3 eV, less than half the G - a * threshold. Greater 
dereal izat ion and different excitation energies clearly improve G-TC separability, 
although no quantitative assessment has been achieved. Dipole-allowed excitations 
provide qualitative support: the IB excited state is not planar for butadiene or hexatriene, 
but planar for octatetraene and longer polyenes(29). Transfer integrals, or Huckel (J's, 
of 2-3 eV can be estimated directly, in contrast to the smaller parameters of Eq . ( l ) in 
ion-radical or magnetic systems whose microscopic constants are taken from 
experiment. A s shown by Hubbard(30) for d-electron metals and by Soos and Klein(8) 
for ion-radical and C T organic salts, the convenient orbital interpretation of Eq. ( l ) is not 
mandatory. We may rigorously consider instead many-electron site functions associated 
with different charge distributions. The fundamental approximation is the restriction to 
four states per site. Core-electron relaxation is automatically included, for example, and 
poses challenges for molecular treatments not l imited to rigid cores. Solid-state 
quantities such as effective masses or transfer integrals in fact incorporate many subtle 
electronic interactions. 

I I I . E x a c t D y n a m i c N L O Coeff ic ients 

The quantum cell models in Eq. ( l ) have a large but finite basis: each site can only be 
empty, doubly occupied, or singly occupied with spin up or down. Subspaces with a 
fixed number N e of electrons, total spin S, and spatial or electron-hole symmetries 
reduce the 4 N possible many-electron states for N sites. The dimensions P(R) of the Rth 
exact subspace of Eq. ( l ) thus depends on the system and increases exponentially with 
N . Although direct diagonalization of P(R)xP(R) matrices becomes impractical for large 
N , low-lying eigenstates are accessible through sparse-matrix methods(25) and all N L O 
responses can be found exactly(31) when the exact ground state 1G> is known. 

There are several reasons for choosing a basis of normalized V B diagrams, lk>, 
in addition to their easy visualization and widespread use in organic chemistry. Second-
quantized expressions for lk> yield N e-electron functions that automatically conserve S, 
diagonalize Eq. ( l ) except for the Huckel term Hty and can be symmetry adapted(32). 
Their representation in terms of 2N-digit binary integers facilitates the construction and 
evaluation of eigenstates, while resolving difficulties encountered in first-quantization 
with the nonorthogonality of V B diagrams. The desirable sparseness of V B 
representations is due to having ~ N bonds for N sites and generating at most a few new 
diagrams per electron transfer. Quite generally, the eigenstates of Eq . ( l ) are linear 
combinations of V B diagrams, as originally proposed by Pauling for conjugated 
molecules. We rigorously have 
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\G) = X c » l * > « 
k 

and a similar expansion for any other eigenstate 1X>. 
N L O coefficient^ 1,2) are responses of 1G> to applied fields Eicoscot with 

polarization i and frequency co. Perturbation theory in the applied fields generates SOS 
expressions. A n n-th order response contains n+1 transition moments and polarizations, 
n energy denominators, and n sums over unperturbed energies. There is an equivalent 
formal development(33) in terms of corrections l(|>j(G))> for a field with polarization i and 
time dependence exp(icot). The inhomogeneous equation for the first-order correction is 

{H-EG + tUB%{(Q)) = -H,\G), (5) 

where EQ is the exact ground-state energy and |ij is given by Eq.(3) in systems with an 
inversion center and by the dipole displacement operator(31) \i\ - <GI|ijlG> in polar 
systems. The SOS expression for the polarizability tensors ocij(co) is simply(34) 

a^co) = -[(G|Mi|ft(fl))> + (G|Ai,|^(®))]. (6) 

Just as the finite dimensionality of Eq . ( l ) makes possible an exact 1G>, it allows(31) 
direct solution of l<t>i(co)> in Eq.(5) by expanding in the V B basis and solving P(R) linear 
equations. The ground state of fra/w-polyenes, for example, is a covalent A g singlet and 
the correction I(|)J(CD)> is a linear combination of ionic B u singlets whose dimensionality 
fixes the number of linear equations in Eq.(5). In the absence of spatial symmetry, 
l<t>j(co)> and 1G> are in the same subspace and their orthogonality is ensured by the 
dipole-displacement operator. 

Additional correction functions are needed for N L O coefficients and are 
equivalent to SOS expressions to any order. The second-order correction l<|>ij(G)2,coi)>, 
with two polarizations and frequencies, is given by(31) 

(H-EG + hC02)\(l>ij(Q)2iC0l) = -HjlhiCOO), (7) 

again with the dipole-displacement operator for polar systems. Direct solution for 
l<t>ij(C°2>(°l)> is again practical in the V B basis for finite dimensional models and leads to 
simple expressions for all %(2) and %W coefficients. Third-harmonic-generation (THG) 
for fields along the polymer axis x in Figure 1 is 

y'„(-3fi>;fi>f <»,<») = [((J)X(-3CO)\VX\Q„(-2CQ-CQ)) + 

(0x(-fi))K|0„(2fi),fi))>+ co - » - © ] / 8 
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where co —»- co indicates the same matrix elements with new arguments. Similarly, the 
two-photon transition moment M ( Y ) for state 1Y> with excitation energy E y is 

M(Y) = < r K | ^ ( - f i ) y ) ) =^(Y^x\R)(R\nx\G)/(ER-ti(Or) (9) 
R 

for monochromatic radiation with coy = Ey /2 f tand polarization x. The sum over 
intermediate states 1R> with excitation energies E R is explicitly shown. 

Matrix elements over correction functions yield exact dynamic N L O coefficients 
for any quantum cel l model in Eq . ( l ) whose 1G> is known in terms of the V B 
expansion, Eq.(4). The finite dimensionality of the basis is crucial. We emphasize that 
all dipole transitions between excited states are implicitly contained in the correction 
functions, as can be verified(31) when excitations 1R> have also been found exactly. 
Specific transition moments <Rl|ilG> or M ( Y ) in Eq.(9) still require knowledge of the 
final state, but virtual or intermediate states can always be avoided. In practice, exact V B 
results for the lowest 10-15 states(35) in the relevant symmetry subspaces of Eq . ( l ) 
suffice for T H G or two-photon spectra of linear systems. Exact transition moments 
among these states and SOS expressions are more convenient for simulating a spectrum 
than single-frequency results such as Eq.(8) and excited-state lifetimes IT are easily 
introduced in the energy denominator of Eq.(9). The finite dimensionality of quantum 
cel l models is also important in SOS expressions based on exact excitations and 
transition moments(35). 

We illustrate in Table I several features of the second hyperpolarizability of N -
site polyenes. The first column compares the xxxx component of Eq.(8) along the 
backbone for trans and cis geometries at ftco = 0.65 e V and molecular P P P 
parameters. The other columns compare the transverse xxyy and yyyy components at 
ft co = 0.30 eV of trans polyenes using P P P and Huckel models with equal band widths 
4t = 9.6 eV and t( l ± 8) with 8 = 0.07. The different signs of the transverse components 

Table I. Second hyperpolarizability, Y(-3CO,CO,CO,CO) in Eq.(8), of P P P and Huckel 
models for N-site polyenes at ftu) = 0.65 or 0.30 eV. The polymers in Figure 1 Refine 
the xy plane, with x along and y perpendicular to the backbone; T(-3CO,CO,CO,CO) x l O is in 
atomic units and Huckel results are in parenthesis; from ref. 31. 
(Reproduced with permission from reference 31. Copyright 1989 
A m e r i c a n Institute of Physics.) 

N xxxx, P P P (0.65 eV) trans, P P P (Hiickel)(0.30eV) 

trans cis xxyy yyyy 

6 3.85 2.71 0.126(-4.46) 0.019(-0.19) 
8 12.72 8.74 0.265(-13.98) 0.035(-0.33) 
10 31.26 21.61 0.456(-68.01) 0.055(-0.51) 
12 63.25 44.42 
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is a correlation effect related to altemancy or electron-hole symmetry. The far larger 
magnitude of the Huckel response is due to smaller excitation energies and larger 
transition dipoles. We summarize some implications of these results, starting with the 
signs of transverse components. 

Alternant hydrocarbons have transfer integrals t in Eq . ( l ) that exclusively 
connect sites in opposite (starred and unstarred) sets. The resulting Huckel energies are 
symmetric about a = 0, as sketched in Figure 2, with index r > 0 for antibonding 
molecular orbitals and r < 0 for bonding M O s . The M O expansion coefficients c p r and 
Cp-r at site p are equal with the same or opposite signs depending on which set contains 
p. The cation and anion of alternant hydrocarbons indeed have similar charge and spin 
distributions. Alternancy symmetry is compatible with V(p,p') in Eq . ( l ) , but requires 
equal site energies and U = V(0). A n S C F approximation for Eq . ( l ) thus preserves the 
symmetric distribution in Figure 2, even in extended systems. A n applied electric field 
breaks alternancy symmetry, since the dipole operator, Eq.(4), generates site energies 
er p £ on projecting r p on E . A s seen in Figure 1, a transverse field on trans - P A gives 
equal but opposite site energies at even and odd carbons. Transition dipoles are then 
rigorously(34) between MO's with ± r. The system behaves as a collection of two-level 
models whose y < 0 is simply understood in terms of saturation. Selection rules imply 
negative y f o r trans polyenes in S C F treatment of Eq. ( l ) for two or more transverse 
polarizations. The xxyy , xyyy , and yyyy components are indeed negative in a 
variational-perturbation analysis(36) of the P P P model, while the same parameters and 
exact results in Table I give positive responses. 

The linear spectrum is typically fit to quantum cell models. In conjugated 
polymers or linear polyenes, the intense 7wc* absorption to 1 is polarized along the 
centrosymmetric backbone and provides a convenient reference E(1B). Thus Huckel and 
P P P parameters for a polymer do not coincide in general and the direct comparison of 
N L O coefficients in Table I may not be the most instructive. Reduced coefficients(37) 
for the same E(1B) and bond lengths provide clearer assessments for different models 
and polymers. A n E ( 1 B ) 3 scaling of responses sharply reduces the difference 
between P P P and Hucke l magnitudes in Table I, even for the dominant xxxx 
component. Differences among reduced coefficients are associated with transition 
dipoles, which are generally smaller in PPP calculations due to electron-hole attraction in 
excited states. Oscillator strengths of conjugated molecules are overestimated in Huckel 
or S C F theory. The Ohno potential, Eq.(2), yields correct oscillator strengths as wel l as 
molecular excitations(38,5) and leads to a singlet exciton for l ^ u in conjugated 
polymers. Although large N L O responses continue to motivate research, there are many 
experimental and theoretical difficulties with extracting accurate magnitudes. N L O 
spectra and other relative quantities afford(12) more useful comparisons. 

IV. From Molecular to Polymeric Responses 

The striking connection between derealization and N L O responses has been amply 
documented. T H G efficiency increases(24) roughly as N 5 with the number of 
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2 
r = 1 

r = -1 
-2 

Conduction 
Band 

Valence 
Band 

E s =0 E s = Er + Et 

Figure 2. Symmetric valence and conduction band energies of alternant 
hydrocarbons. The virtual electron-hole excitations Er and Et are dipole allowed; 
the even-parity virtual state is E s = O for successive generation and Er+Et for 
consecutive excitation of two pairs. 

16 I , , r 

5 6 7 8 9 10 11 
C J ( l O ^ m " 1 ) 

Figure 3. T H G spectrum of p-carotene. Closed and open circles are data from 
refs. 41-43 and 44, respectively, while the theoretical fit discussed in ref. 40 
is based on harmonic potentials for overlapping I B and 2 A resonances related 
to linear and polyene spectra. 
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conjugated carbons. Accurate length dependencies are difficult to measure, however, 
since even the most homologous series leads to conformational and solubility 
differences with increasing N and requires resonance as well as local-field corrections. 
Moreover, physical arguments require the per-site response to become independent of 
length in polymers. Their large T H G responses indicate an N between 50 and 100 
carbons for comparable molecular responses(12), consistent with recent T H G data(39) 
on long conjugated molecules. The Ji-carotene spectrum(40) in Figure 3 is representative 
of both polyenes and polymers: the dominant feature is a three-photon resonance at 
E ( lB ) / 3 that is within an order of magnitude of P D A responses. The data of Van Beek et 
al. (41-43) are shown as closed circles, while two separate data sets of Aramaki et al. 
(44) are open circles with estimated uncertainties. Both groups measured the phase as 
wel l as the magnitude of the T H G response. T H G spectra of polymers also show 
weaker two and three-photon resonances; vibronic contributions to the |}-carotene 
spectrum are summarized in Section V I . 

The evolution from localized to extended states also appears in atomic clusters, 
disordered conductors, and percolation problems. Idealized models are invoked to 
explore such questions and to identify central issues. Huckel models are the natural 
starting point. The molecular perspective of early studies(45) is apparent from the choice 
of uniform transfer integrals, or alternation 8 = 0 on taking t ( l ± 8) for partial double 
and single bonds. Large finite-size splittings in short polyenes are not sensitive to small 
8, but regular and alternating Huckel chains differ fundamentally at large N . Uniform t's 
lead to a one-dimensional metal. The perturbation expansion in applied fields then 
diverges and N L O coefficients become unphysical. Conversely, alternating chains with 
8 > 0 are semiconductor for N e = N and the Huckel gap 4t8 ensures well-defined N L O 
responses. The N and 8 dependencies are linked. Molecular or finite-size effects are 
important for N 8 « 1, band results hold for N 8 » 1, and crossover behavior is 
expected around NS ~ 1. Such arguments apply in general to quantum cell models and 
indeed to the full electronic structure, but detailed studies are restricted to noninteracting 
systems with fixed sites. The Peierls and other instabilities of one-dimensional metals 
are separate issues. Alternating site energies ± e in Huckel chains model donor-acceptor 
properties(46), generate a gap in half-filled regular chains, and thus lead to similar 
considerations with increasing N . 

N L O coefficients of Huckel or other noninteracting models are obtained by 
solving N x N secular determinants for N sites. As sketched in Figure 2, the ground state 
1G 0> has N e electrons in the lowest M O s and there are N - Ng/2 empty orbitals at higher 
energy. SOS expressions for N L O coefficients are conveniently analyzed in terms of 
virtual excitations(37). We know from linked-cluster expansions that contributions in 
N 2 or higher powers must cancel exactly. In Huckel models, the polarizability, Eq.(6), 
involves one electron-hole (e-h) pair and scales as N on converting the sum to an 
integral. The four transitions for any %0) response generate at most two e-h pairs. In 
centrosymmetric systems, the pathway through virtual states is G - » rB —> s A —> tB —» 
G . Odd-parity B states have one e-h pair in noninteracting models, while the even-
parity state sA has 0, 1, or 2 e-h pairs. The first possibility corresponds to successive e-
h pairs, with s A = G as sketched in Figure 2, and scales as N ( N - 1). The N 2 part 
cancels in general(37) against sA states with the same two e-h pairs, but created and 
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annihilated consecutively as sketched in Figure 2. The unlinked contributions to 
contain s A terms with one e-h pair, with scattering of either the electron or hole in r B , as 
well as one and two e-h pairs that scale as N . N L O coefficients for Huckel chains of N ~ 
500 have been reported(47) using e-h pairs as virtual excitations. 

Translational symmetry is normally used to simplify the analysis of extended 
systems. The evolution of molecular to polymeric states in alternating Huckel chains can 
be followed analytically for N = 4n+2, which gives nondegenerate 1G 0 > at 8 = 0. Care 
must then be taken with the applied field, either by using the velocity operator(48) or by 
explicitly correcting(49) for the angle between die field and the backbone. The static 
second polarizability per site, y(0 ;8 ,N) /N, is shown(50) in Figure 4 in units of the 
dimer response, Yd = -e2a2/2%t3, which is negative for a two-level system. Uniform t's 
lead to the simple analytical result(50) 

2\rX^'2nlN - 1 ) 
7 ( 0 ; 0 , A 0 = I M \ . 7 A f - , (10) 

3 s i n nl N 

which increases as N 5 for N » n and regains the size dependence found numerically. 
The response diverges in the unphysical limit of a half-filled metallic band. For 8 > 0, 
the curves in Figure 4 become independent of N . The analytical expression for 
y(0;8,N)/N goes as 8 - 6 and agrees(50) precisely with the band-theoretical result(51) 
based on the velocity operator. The marked enhancement of Y (0;8,N)/N in the crossover 
region 8 N ~ 1 can be traced to cancellation between positive intraband processes in 
which the virtual state s A contains one e-h pair and negative interband processes. A s 
seen in Eq.(10), the terms individually diverge as N 7 , faster than their sum, and the 
cancellation is sensitive to the band-edge states around 8 N ~ n. To describe Y(0;8,N) as 
N b , the exponent becomes b(8,N) and is simply the logarithmic derivative. We have b ~ 
5 for short chains with 8 N « 1, b = 1 for infinite chains with any 8 > 0, and large(50) 
b ~ 8-9 in the crossover region for 8 = 10" 3. The interesting behavior of Y (0 ;8 ,N)/N is 
associated with Huckel models and implications for actual molecules are indirect 

Size extensivity also holds for interacting models. N L O responses presuppose 
a semiconductor or insulator. A n energy gap E(1B) in the linear spectrum implies a 
localized spectrum and greater localization with increasing alternation 8. V i r tua l 
excitations sufficiently far apart are then additive and the cancellation in F ig . 2 between 
successive and consecutive virtual excitations again follows. While first-order C I is size 
extensive, truncation at doubles, triples, or higher is not. Static Y(0;8,N) of P P P models 
with the Ohno potential have been obtained by different methods, most often by direct-
field S C F calculations. Exact results give and exponent b ~ 3.8 for Yxxxx between N = 
6 and 12; variational-perturbation(36) theory gives b ~ 4.25 up to N = 20, sti l l wel l 
below the noninteracting value; CI including all double excitations gives(52) b ~ 5.4 up 
to N = 16, close to the noninteracting value. D C I is almost quantitative for N = 4, but 
becomes more approximate with increasing N . The evolution to band states shown in 
F i g . 4 for Huckel chains cannot presently be followed in P P P or other interacting 
models with 8 - 0 . 1 . 
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The limited scope of exact solutions and the rapidly increasing basis of Eq. ( l ) 
clearly indicate the need for size-extensive approximations for interacting models. 
Coupled(53), coupled-perturbed(54), or time-dependent Hartree-Fock (TDHF)(55) 
methods illustrate current techniques for correlated approximations. A n anharmonic 
oscillator model based on T D H F theory has recently been applied(56) to interacting 
models for N L O responses of conjugated polymers. These approaches all use a single-
determinantal approximation, but multireference treatments(57) of quantum cell models 
have also been tried. Size extensivity is a major challenge for C I beyond first-order 
required for strong correlations. Coupled-cluster methods(58) maintain size extensivity 
while systematically including correlations in single as we l l as multireference 
approaches. Size-extensive corrections incorporate linked-diagram expansions and have 
primarily been applied(59,60) to small molecules. 

We have recently considered(61) a different approach for correlated states of 
extended systems. W e start with analytical excitations of dimers, construct crystal states 
using molecular exciton theory, and treat interdimer hopping or interactions in chains 
with 8 < 1 as perturbations. Molecular exciton analysis based on the dimer basis 
accounts for the number, position, and intensities of linear and two-photon spectra 
found by exact solution of oligomers. As shown in Table II, threshold energies for 
triplet, one-photon, and two-photon excitations converge rapidly with N at 8 = 0.6, 
where t+ = 4t., in either Hubbard or P P P models. We used the Ohno potential, Eq.(2), 
the P A geometry in F i g . 1, and reduced the bandwidth 4t to 5.0 e V in Table II. This 
preserves the ordering E(2A) < E(1B) found(35) in polyenes, P A , and P D A ' s . The 
crossover of 2 A and I B with increasing correlations occurs at intermediate correlations 
U - 2t where neither band nor spin-wave approximations hold. The suitability of 
oligomer calculations for strongly alternating inifnite chains is based on their short 
coherence length, which goes as 8"6 Huckel chains(51). The smaller alternation realized 
in conjugated polymers implies considerably more dereal izat ion, but preserves the 
symmetry of quantum cell models, Eq. ( l ) . 

Table II. Energy thresholds, in eV , of N-site chains with t+ = -2.0 eV , alternation 8 = 
0.60, Ohno potential V(p,p') in E q . (2), and P A geometry in F i g . 1; E T is the lowest 
triplet, E (2A) and E(1B) the lowest even and odd-parity singlets, and - E g / N is the 
ground-state energy per site; from ref. 61. 
(Reproduced with permission from reference 61.) 

N E T E(2A) E(1B) - E g / N 

8 2.5165 4.9187 5.4472 1.3213 
10 2.5099 4.9097 5.3717 1.3224 
12 2.5060 4.9054 5.3203 1.3231 
14 2.5035 4.9031 5.2835 1.3237 

polymer 2.50 4.90 5.20 1.335 
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20.0 

4.0 
log[N] 

Figure 4. Static second hyperpolarizability per site, y(0;8,N)/N, of N = 4n+2 
site Huckel rings with alternating transfer integrals t(l±8); from ref. 50. 
(Reproduced with permission from reference 50. Copyright 1993 
A m e r i c a n Institute of Physics.) 
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Figure 5. Exact two-photon transition moments, M in Eq.(9), of A g states 
of 8-site PPP chains with alternations 8 appropriate for P A , P D A , and PS 
polymers in Fig . 1 and otherwise identical polyene parameters and geometry; 
from ref. 12. 
(Reproduced with permission from reference 12. Copyright 1991 J o h n 
Wi ley & Sons.) 
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V . E v e n - P a r i t y States and Exc i tons 

The excitation thresholds E x , E (2A) , and E(1B) in Table II resemble molecular 
solids(62) rather than wide band semiconductors, whose excitations al l coincide at the 
band gap. Conjugated polymers also have a threshold Eb > E(1B) associated with the 
generation of charge carriers, as found(63) most accurately in crystalline P D A ' s in 
Figure 1. The intense absorption at E(1B) is consequently associated with a singlet 
exciton. The triplet, singlet, two-photon, and charge-carrier thresholds have been 
measured separately for several PS polymers(62) in Figure 1, and only the triplet 
excitation remains to be found in P D A ' s . These observations indicate that S C F 
treatments of extended systems must minimally include correlations between an excited 
electron-hole pair to describe different energy thresholds. First-order C I for quantum-
ce l l models with long-rage Coulomb interactions similar to Eq.(2) have been 
applied(64,65) to PS and P P V polymers, with adjustable parameters. First-order C I 
leads to E(2A) > E(1B) and is limited to less correlated polymers with larger effective 
alternation(66). 

The occurrence of E(2A) below E(1B) in linear polyenes is a paradigm for 
Coulomb correlations(67,5). In centrosymmetric systems, the even-parity 1 A g states are 
two-photon allowed, related to Im %(3)(co;-co,co,-co), and hence probed in degenerate 
four-wave-mixing experiments. They also appear as resonances in T H G spectra and are 
the sA virtual states discussed in Figure 2. Two-photon transition dipoles M ( Y ) , Eq.(9), 
are shown in Figure 5 on a logarithmic scale, in units of E(1B) , for P P P models of 
octatetraene and the indicated alternation 8. A s previously noted, molecular P P P 
parameters account for E(1B) and E(2A) in polyenes and related ions, as wel l as n-n* 
spectra of conjugated hydrocarbons. To reduce the N dependence, we use E ( I B ) as an 
internal standard and find(35) E(2A) around E ( l B ) / 2 for the P A alternation 8 = 0.07, 
consistent with recent two-photon spectra(68) and older extrapolations(69). In contrast 
to the converged thresholds in Table II, however, the N = 8 spectra in Figure 5 are far 
from the polymer limit. 

Increasing alternation leads in Figure 5 to a crossover of 2 A and I B . The 
lowest singlet excitation S i becomes one-photon allowed(70) at large 8 and strong 
fluorescence is found in such polymers(71). Large alternation in PS is associated(20) 
with quite different t + for S i - S i bonds and t. for two s p 3 hybrids of one S i . The 
bridgehead carbons in P P V lead to a topological alternation^2), which in Huckel 
models decomposes the rc-system exactly into an extended alternating chain and orbitals 
localized on one ring. The nonconjugated S heteroatoms of the P T backbone in Figure 1 
generate a charge-density-wave ground state with different site energies ±e in Eq. ( l ) for 
the a and p carbons(73). When site energies based on semiempirical calculations are 
added to the P P P model with molecular parameters, E(2A) increases strongly and S\ 
becomes I B . The one and two-photon thresholds support the association(66) of 
polymer fluorescence with E(1B) < E(2A). 

Quantum cell models account naturally for the 2 A / I B crossover of 
centrosymmetric chains with electron-hole symmetry. Uniform t's in Hubbard chains 
rigorously(74,75) lead to vanishing E(2A) and finite E(1B) for any U > 0. The 
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Figure 6. Schematic representation of three electronic states with excitation 
energies COA, COB, harmonic potentials with common frequency coi, and 
displacements a,b. Dipole-allowed transitions connect the odd-parity state 
11B> to the even-parity ground state 1G> and excited states 12A>. Over
lapping resonance occur for COA/2 ~ COR/3; from ref. 40. 
(Reproduced with permission from reference 40. Copyright 1994 
A m e r i c a n Institute of Physics.) 
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symmetries are retained in 8 = 0 chains with arbitrary spin-independent V(Rpp f ) in 
Eq . ( l ) . Finite alternation generates a two-photon gap E(2A) whose position relative to 
E(1B) is a measure of correlations. The arithmetic mean of the band gap and band width 
is 2t+ = 2t(l+8) in alternating chains, and its magnitude relative to U or V(Rpp ' ) 
controls(70) whether the correlations appear to be strong or weak. Since the conjugated 
polymers in Figure 1 are similar chemically and even the PS band width is - 1 0 eV , 
comparable correlations are expected(71) and the 2A/1B crossover is strongly linked to 
the alternation. Models provide the clearest understanding of excited-state crossovers 
and their connection to polymer fluorescence. 

The strong two-photon feature around 1.5 E(1B) in Figure 5 is associated with 
two-electron excitation and, in the band limit, gives(35) a giant singularity at 2 E(1B). 
The strongest two-photon absorption(76) of P D A - P T S crystals peaks at 2.7 eV, or 1.35 
E(1B) , consistent with molecular P P P models. The corresponding S i parameters(20) 
place both E(2A) and the biexciton above E(1B), again consistent(62) with broad two-
photon spectra and equally broad excited-state absorption and electroabsorption. 
Accurate determination of high-energy excitations is difficult either experimentally or 
theoretically and may be fundamentally limited by lifetimes in conjugated polymers. The 
sharp Eb threshold(63) for charge earners in crystalline P D A ' s is some 0.2 eV below the 
biexciton, which thus overlaps a continuum. 

VI. Vibronic and Conformational Contributions 

Excited states of conjugated molecules are strongly coupled to backbone C C stretches, 
as shown by vibronic progression in linear and two-photon spectra or by intense 
resonance Raman scattering. Soliton or polaron formation in the S S H model describes 
excited-state relaxation following the addition of an electron or hole. Vibronic analysis is 
a separate field with many challenges even in small molecules. W e touch here on two 
rather different aspects of vibronic contributions to quantum cell models. In principle, 
the distance dependences of t(R) or V ( R ) yield linear electron-phonon coupling 
constants such as t '(R e) in Eq . ( l ) and quadratic terms involving second derivatives 
evaluated at equilibrium positions. Since these microscopic parameters are defined for 
the delocalized electrons being modeled, a major challenge for their identification is to 
identify 7C-electron contributions accurately in vibrational spectra. This has been done in 
terms of reference force-fields(77,78) and Herzberg-Teller expansions. Rather different 
considerations arise in modeling vibronic contributions(79,40) to N L O coefficients. The 
Condon approximation usually suffices for the strong, dipole-allowed transitions 
associated with large N L O responses. Information about excited-state parameters 
becomes the limiting factor. 

The p-carotene T H G spectrum in Figure 3 illustrates a favorable case. Careful 
analysis of vibronic structure in the linear spectrum and of Raman excitation profiles 
yields(80) the displacement b along 9 normal modes in I B . Single displacements b and a 
are shown in Figure 6 for harmonic potentials representing the I B and 2 A states. The 
strongest coupling is to C=C modes with coi ~ 0.2 eV in both ground and excited state. 
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Analytical expressions are then available for all Franck-Condon factors, which modulate 
the electronic transition moment <Xl|ilY> over the vibrational levels. Closure simplifies 
the SOS expressions whenever the energy denominators E(X) - n ftco are large compared 
to the vibrational spacings. Vibronic contributions then reduce to using Franck-Condon 
averages rather than 0-0 excitations for N L O coefficients. The actual displacements a, b 
and excitation energies © A , G>B in Fig . 6 are needed for small energy denominators. 

In P-carotene, the three-photon resonance to I B and two-photon resonance to 
2 A overlap for radiation around the peak T H G response in Figure 3. Overlapping 
resonance increase(40) the response by a factor of 3-5 near the peak and give the faster 
decrease towards high energy observed experimentally. The theoretical fit in Figure 6 
has two displacements b and frequencies for C=C and C - C vibrations, as wel l as the 
transition dipole to I B , taken from the linear spectrum. We estimated a and COA ~ 14,500 
cm~l from two-photon polyene spectra(81), and an even lower value of 13,200 cm~l 
has recently been reported(82) for P-carotene and supports the occurrence of 
overlapping resonances COA/2 ~ COB/3. Transition dipoles between I B , 2 A , and the even-
parity state around 1.5 E(1B) were taken from exact PPP calculations on polyenes. N L O 
spectra incorporate excited-state and vibronic information gleaned from other sources. 
The fit in Figure 6 for the T H G amplitude and a similarly good fit for the phase are 
based on related spectra, except for Lorentzian lifetime broadening. Additional Gaussian 
broadening gives superior fits to linear and T H G spectra around the peak(41) and is 
reasonable for molecules dispersed in polystyrene. Such broadening smoothes out the 
vibronic features in Figure 6. The spectrum of overlapping resonances depends on the 
relative phases of the displacement a and b in the two excited states and such information 
may be accessible from high-resolution data. 

Vibronic contributions to the static second hyperpolarizability(79) are related 
to resonance Raman cross sections. Indeed, vibrational data provides direct information 
about N L O coefficients(83). We w i l l not pursue these applications of models. 
Conformational effects have been relatively neglected, although the flexibility of both 
backbones and side chains has been widely recognized in experimental studies(2). The 
thermochromic and solvatochromic trransitions of PS and P D A illustrate the coupling of 
the intense E(1B) transition to the backbone conformation. Segment models(84,85,62) 
account for many qualitative features by postulating defects that interrupt the 
conjugation. Detailed connection with electronic excitations is elusive, however. Huckel 
models reflect the connectivity rather than conformations, while the limitation of accurate 
correlated states to modest N hinders widespread application. Specific conformational 
effects can be treated as perturbations in A V ( R p p ' ) , the change in the potential from a 
reference geometry. For example, E(2A) and E(1B) of all-trans octatetraene change(87) 
far more on forming a cis single bond than a cis double bond, in agreement with direct 
P P P calculations. The perturbation analysis(88) is more instructive and economical, as it 
accounts for the change in terms of charge-correlation functions of the all-trans 
reference. Transition moments are also sensitive to molecular conformations and such 
degrees of freedom must be considered in comparing N L O coefficients. 
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V I I . C o n c l u d i n g R e m a r k s 

We have touched on a variety of N L O calculations related to quantum cell models, Eq . 
(1), for extended systems. Model Hamiltonians are well suited for initial discussions of 
vibronic, conformational, lifetime, or other contributions to N L O spectra. The famous 
two or three-level models used to demonstrate the richness of N L O phenomena are even 
more idealized, with excited states and transition moments chosen to fit experiment. 
Quantum cell models provide the initial relation between such few-level schemes and the 
underlying electronic structure of conjugated molecules, polymers, or other extended 
systems with delocalized electrons. Subsequent studies of individual cases are needed to 
assess the strengths and limitations of quantum cell models. General issues such as the 
evolution from molecular to band states, excited-state crossovers, or size extensivity are 
most instructively discussed in terms of models. 

The electronic excitations and transition moments appearing in SOS expressions 
for N L O coefficients emphasize quite different aspects of electronic structure than 
encountered in ground-state calculations. Correlations are far more important in excited 
states. Comparison of exact and S C F results for models with interacting electrons often 
uncovers qualitative differences in the ordering of even and odd-parity states or in signs 
of N L O coefficients. We have focused on P P P descriptions of T H G and two-photon 
spectra of the conjugated polymers in Figure 1, and have found the Coulomb potential 
and other molecular parameters to provide an excellent starting point for neutral 
excitations of conjugated polymers. In a related context, models provide guidance for 
extending quantum-chemical methods for molecules and band-structure calculations of 
solids to include properly excited states and correlations. The excitation thresholds, 
photophysics, and N L O spectra of conjugated polymers bear striking resembles to large 
conjugated molecules, while charged excitations generated by chemical doping and 
vibronic structure indicate strong electron-phonon coupling. W e expect quantum cell 
models in general, and PPP models in particular, to remain important approaches to the 
electronic states of extended systems with interacting electrons coupled to a lattice. 
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Chapter 12 

Semiempirical Quantum Cell Models 
for the Third-Order Nonlinear Optical 

Response of Conjugated Polymers 

David Yaron 

Department of Chemistry, Carnegie Mellon University, 
4400 Fifth Avenue, Pittsburgh, PA 15213-3890 

Semiempirical models are used to explore how electron-electron inter
actions may alter Huckel theory's simple physical picture of the origin 
of the nonlinear optical response. Huckel theory treats a conjugated 
polymer as a one-dimensional semiconductor and attributes the large 
hyperpolarizability to a migration process in which the first photon sees 
an insulator, and must create an electron-hole pair, while the second 
photon sees a conductor, moving the electron or hole within a one-
dimensional band. The effects of limiting the excited-state charge 
transfer are explored using a model based on singles-configuration 
interaction theory and parameters appropriate for gas-phase polyenes. 
The effects of introducing Coulomb interactions between two different 
electron-hole pairs are also discussed. In both cases, Coulomb interac
tions have a quantitative effect, but Huckel theory's predictions remain 
qualitatively valid. The role of ground state correlation and interactions 
between polymer chains are also briefly discussed. 

Conjugated polymers and other systems with delocalized electrons exhibit large third-
order nonlinear optical responses (1). In this paper, semi-empirical quantum-cell mod
els are used to gain a better understanding of the origin of the large nonlinear response. 
We first look carefully at how Huckel theory, the simplest model of delocalized elec
trons, connects electron derealization to a large hyperpolarizability (2,3). We then 
discuss the effects electron-electron interactions may have on the simple qualitative 
picture presented by Huckel theory. From experimental (4) and theoretical (5-7) stud
ies, electron correlation is known to have large qualitative effects on both the structure 
of the energy levels and the predicted hyperpolarizabilities of polyenes. But the effects 
of electron correlation in the long-chain, polymeric limit are not well understood. 
Electron-electron interactions are often needed to rationalize the resonant features of 
the nonlinear response (8-10), since without such interactions, the lowest two-photon 

0097-6156/96/0628-0211$15.00/0 
© 1996 American Chemical Society 
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212 NONLINEAR OPTICAL MATERIALS 

allowed state w i l l be nearly degenerate with the lowest one-photon allowed state. 
However, in this work, we concentrate on the effects electron correlation may have on 
the magnitude of the nonresonant response, a quantity of importance in many nonlin
ear optical applications (77). 

We begin by presenting the form of quantum cell Hamiltonians and discussing 
some general aspects of our use of semiempirical models. We then discuss the cancel
lation of unlinked clusters in the sum over states expression for the hyperpolarizability. 
This, together with the Huckel model, forms the basis for our approach to nonlinear 
optics. One possible deficiency of Huckel theory is that it may be overestimating the 
degree of charge transfer present in the low-lying excited states and we address this in 
the S-CI model presented below. Huckel theory also ignores the Coulomb interactions 
between electron-hole pairs, and we briefly describe our Coulomb scattering model 
designed to explore the effects of these interactions on the hyperpolarizability. We 
then briefly consider effects that may arise from ground state correlation and from 
interactions between chains. 

Q u a n t u m C e l l Hamiltonians 

The models we use are based on semiempirical Hamiltonians for the delocalized n-
electrons. These models start with the electronic Hamiltonian as written in a basis of 
spin orbitals (72), 

H = £ [ i l h j j ] a.ta. + X [ ik l j l ] a ^ a / a ^ (D 
ij ijkl 

The indices i , j , k, and 1 label spin orbitals, (ft, a^ creates an electron in the i t h spin 
orbital, aj destroys an electron in the j t h spin orbital, [ilhjlj] is the one-electron Hami l 
tonian matrix element between <fc* and (|>j, and [ikljl] are the two-electron Hamiltonian 
matrix elements in chemist's notation: 

[ ik l j l ] = f d r ^ r ^ t ( F l) <>k (v{) — <>.t ( r 2 ) ( r 2 ) (2) 
r l 2 

We obtain a quantum cell model by assuming zero-differential-overlap (ZDO) 
between orbitals: 

j d r ^ H ^ r , ) = 5 i k ; [ ik l j l ] = ^ 8 ^ , (3) 

Within the Z D O approximation, each electron in eq. 2 can be assigned to a specific 
orbital. For a Ti-electron model with one p-orbital per carbon atom, the indices i and j 
label carbon atoms or sites, and each site has a quantum cell that can hold between 0 
and 2 electrons. 

The simplest quantum cell models are tight-binding models such as Huckel 
(2,3) or Su-Schreiffer-Heeger (SSH) theory (13) that ignore electron-electron repul
sions entirely and include a one-electron matrix element or transfer integral, typically 
referred to as (J or t, only between bonded atoms. The size of the transfer integral is 
related to the strength of the bond connecting the two atoms and a linear or exponen
tial dependence of the transfer integral on bond length is typically assumed. Since the 
bond-length dependence of the transfer integral couples the electronic motion to the 
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12. YARON Semiempirical Quantum Cell Models 213 

vibrational motion, a model that assumes a linear form, such as the S S H model, is 
often referred to as including linear electron-phonon coupling. 

Tj j of eq. 3 gives the Coulomb repulsion energy between an electron on site i 
and an electron on site j . The on-site Coulomb repulsion energy, or Hubbard parameter 
Tj j=U, is the Coulomb energy associated with placing two electrons on the same atom. 
A Hubbard model includes only on-site Coulomb repulsion, while an extended Hub
bard model also includes interactions between sites. The Pariser-Parr-Pople model is 
an extended Hubbard model that includes interactions between all sites. In such a 
model, the on-site interaction energy, U , is typically set to the difference between the 
ionization potential and the electron affinity of an isolated carbon atom, I P - E A = 
11.13eV (5). Since for both the IP and the E A of carbon an electron is either added to 
or removed from a p orbital, the difference results from the Coulomb energy associ
ated with placing two electrons in the same orbital in the negative ion C~. The Cou
lomb energy between different sites is typically assumed to be a function of the 
distance between sites, r, and is obtained by interpolating from U at r=0, to the C o u 
lomb 1/r form at long distance. In this work, we use the Ohno interpolation formula 

The parameterization of the Coulomb energy discussed above ignores dielectric stabi
lization from adjacent chains which, as discussed below, may have large effects on the 
structure of the excited states. 

Semiempirical Models Consisting of both a Hamiltonian and a Solution Method 

Obtaining accurate solutions of even the simplest quantum cell model that includes 
Coulomb interactions is a difficult task. Leib and W u (15) obtained an analytic solu
tion of the Hubbard model for the special case of a one-dimensional chain of atoms in 
an all-bonds-equal geometry, and numerically exact solutions of the extended Hubbard 
model have been obtained by Soos (6) and Mazumdar (10) for systems with up to 12 
carbons. But, in general, i f we are interested in the long-chain polymeric limit, we are 
forced to work with approximate solution methods. The addition of an electron-elec
tron repulsion term to the Hamiltonian, even in the simple form of an on-site Hubbard 
interaction, takes us from a relatively simple Huckel Hamiltonian to a Hamiltonian 
that is extremely difficult to solve. This reflects the fact that electron-electron interac
tions are responsible for many different qualitative effects and in attempting to solve a 
Hamiltonian that includes Coulomb interactions, we are attempting to include all of 
these effects at once. So i f we view the Hamiltonian as defining a semiempirical 
model, it is difficult to obtain models with complexities that lie between that of the 
Huckel and extended Hubbard models. If instead, we view the semi-empirical model 
as consisting of both the Hamiltonian and the method used in its solution, we can, 
depending on our choice of solution method, construct intermediate models that 
include some but not all of the effects of electron-electron interactions. From a more 
formal perspective, such an approach is equivalent to constructing a semi-empirical 

(14): 

r ( r ) 14.397eV A (4) 
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214 NONLINEAR OPTICAL MATERIALS 

Hamiltonian by starting with a quantum-cell Hamiltonian and projecting this onto the 
space spanned by the trial solutions. 

The models discussed below are first parameterized to the band gap and band 
width of the polymer and then used to predict the hyperpolarizability. If the solution 
method is viewed as part of the semi-empirical model, it makes sense to reparameter-
ize the Hamiltonian for each method of solution. This is similar in spirit to the repa-
rameterization of a one-electron Hamiltonian on addition of a two-electron term. For 
instance, to maintain agreement with experimental absorption spectra of polyenes, the 
difference in transfer integral for the single and double bonds, IP1-P2'' * s s e t 1 0 about 
0.9eV (2) in the Huckel Hamiltonian and lowered to about 0.35eV in the P P P Hamilto
nian (5). This is easily rationalized since in Huckel theory, P 2 and $1 must absorb 
effects due to electron-electron interactions and this is no longer necessary in the P P P 
model. Similarly, in our approach, changing the method of solution alters what is 
explicitly included in the model and what must be absorbed into the effective parame
ters. 

Cancel lat ion of Non-Size Extensive Terms 

Our qualitative picture of the nonlinear response is rooted in Huckel theory and the 
following physical interpretation of the unlinked cluster theorem. The sum-over-states 
expression for the non-resonant third-order hyperpolarizability is (7): 

y _ y (GS|xlA)(A|x|B)(B|xlC)(Clx|GS) y (GS|x|A)(A|xlGS)(GS|x|C)(C|xlGS) 
A B C ^ A ^ B ^ C A C EAEr, 

A C 

where IGS) is the ground electronic state, I A ) , IB) and IC) are excited electronic states, 
x is the dipole operator and E A is the energy of state IA) relative to the ground state. 
E q . 5 is obtained by using fourth-order perturbation theory to describe the effects of an 
applied electric field on the energy. In fourth-order perturbation theory, unlinked clus
ters appear in the sum-over-states expression (16,12). These unlinked clusters are 
terms in the first summation of eq. 5 that are exactly cancelled by terms in the second 
summation. 

In an independent electron model, such as Huckel theory, the hyperpolarizabil
ity may be written as a sum over molecular orbitals, rather than the many-electron 
states of eq. 5. The summation over molecular orbitals has many easily identified 
unlinked clusters which may be explicitly removed by using, for example, the 
unlinked cluster theorem of diagrammatic perturbation theory. Andre et. al. (17) used 
such an approach to obtain an efficient expression for the hyperpolarizability within a 
noninteracting electron model. But in going beyond Huckel theory, it is convenient to 
work with a summation over many-electron states, and it is useful to consider how 
unlinked clusters appear within this context. B y first understanding how unlinked clus
ters appear in a summation over the many-electron states of the Huckel model, we can 
perhaps understand how they w i l l appear in the summation over the many-electrons 
states of a correlated model. 

The terms in eq. 5 w i l l be represented schematically as: 
IGS)->IA>-»IB>->IC)->IGS> - I G S ) - * I A M G S M C ) - > I G S > 
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12. YARON Semiempirical Quantum Cell Models 215 

The first summation can be viewed as a sum over all possible virtual two-photon 
absorption processes. (Since we are off resonance, the molecule does not actually 
absorb energy from the electric field, nevertheless we wi l l use the term absorption as a 
convenient language for the sum over virtual states in eq. 5. Alternatively, the mole
cule can be viewed as absorbing the photon for a very short time, as set by the time-
energy uncertainty principle, with the uncertainty in energy being the distance off res
onance (18).) In the first summation of eq. 5, an unlinked cluster results when each of 
the two photons, IGS)-»IA) and IA)—»IB), creates an excitation and these two excita
tions do not interact (19-21,7) 

IGS>—>ll excitation)-»l2 non-interacting excitations)-* II excitation)-»IGS) 
- IGS)-»I1 excitation)-*IGS)->ll excitation)-»IGS) = 0 

The type of the excitation depends on the model, for instance, in Huckel theory the 
excitations are electron-hole pairs. But independent of model, we expect that in the 
limit of a long polymer chain, it w i l l be possible to create two excitations that do not 
interact. Non-interacting means that the presence of the first excitation has no effect on 
either the energy or transition moment involved in the creation of the second excita
tion. More precisely, for state IB) to contain the excitations present in IA) and IC) and 
for these excitations to be non-interacting, the energy of the state containing both exci
tations must be the sum of the energies for the states containing either excitation indi 
vidually, E B = E A + E C ; the transition moment for creating the excitation in IC) on top of 
that in IA) must be the same as that for creating the excitation in IC) on the ground 
state, <BlxlA)=(ClxlGS); and similarly, (BlxlC)=<AlxlGS). 

The origin of the above cancellation can be understood by considering a gas of 
N non-interacting molecules. If we restrict the summations in eq. 5 such that in each 
term, the excited states, IA), IB), and IC) are those of one specific molecule, then the 
summation changes into a sum over individual molecules and we get the expected 
result; namely, that the hyperpolarizability of the gas is N times that of a single mole
cule. If instead, we sum over the excited states of the gas as a whole, we w i l l include 
states IB) in which two different molecules are excited. Since the gas molecules are 
noninteracting, these states contain two noninteracting excitations, and as discussed 
above, their contribution to the first summation of eq. 5 w i l l be identically cancelled 
by terms in the second summation, specifically, those terms in which IA) and IC) are 
the excited states of two different molecules. As we turn on interactions between gas 
molecules, states containing two different excited molecules w i l l begin to contribute to 
the hyperpolarizability. A polymer is analogous to the interacting gas, since in the long 
chain limit, it is possible to create two excitations that interact either weakly or 
strongly. 

Understanding the cancellation between the two summations of eq. 5 is espe
cially important in work on polymers, since in the polymeric l imit, the cancellation 
between the two terms becomes infinitely large (19-21,7). In the infinite chain limit, 
the hyperpolarizability should scale as the number of unit cells in the polymer (yoc N). 
However, both the first and second summations in eq. 5 scale as the square of the 
length of the polymer, N 2 , and it is only the difference that has the correct linear 
dependence on chain length. Thus in the infinite chain limit, eq. 5 gives the hyperpo
larizability per unit cell y / N , a finite quantity, as the difference between two infinite 
quantities. Due to this large cancellation, the origin of the nonlinear response can not 
be understood by looking at either summation individually. A two-photon state, IB), 
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216 NONLINEAR OPTICAL MATERIALS 

that contributes a large amount to the first summation of eq. 5 can not necessarily be 
identified as an important contributor to the nonlinear response, since it may be con
tributing primarily to the infinity that is to be cancelled by the second summation. A s 
discussed above, this w i l l occur when state IB) contains two non-interacting excita
tions and the origin of the N 2 dependence of the first term relates to there being N 2 dif
ferent ways to create two noninteracting excitations on a long chain. (For example, in 
a noninteracting gas of N molecules, the number of states containing two different 
excited molecules scales as N 2 . ) The difficulty is that in a correlated model of a poly
mer, it is not easy to identify a state as containing two noninteracting or weakly inter
acting excitations. Overcoming this difficulty is the motivation for our scattering 
approach, described below. 

Knowing which processes do not contribute to the hyperpolarizability may 
allow us to infer the characteristics of a material that lead to a large nonlinear optical 
response. That the creation of two noninteracting excitations does not contribute to the 
hyperpolarizability can be taken to mean that a nonlinear response results only when 
the first photon changes the material in a manner that has an effect on the absorption of 
the second photon. It seems reasonable to extend this and say that for a material to 
have a large nonlinear optical response, the first photon must have a large qualitative 
effect on the nature of the material. In the next section, we identify two qualitatively 
different ways for the second photon to see the effects of the first photon. 

The H u c k e l M o d e l 

Within the Huckel model, a conjugated polymer is a one-dimensional semiconductor 
(2,5). For instance, in the Huckel model of polyacetylene, the alternation between sin
gle and double bonds, or Peierls distortion (13), leads to the formation of two bands of 
molecular orbitals, a filled valence band consisting of n bonding orbitals and an empty 
conduction band consisting of it* anti-bonding orbitals. The distance from the bottom 
of the valence band to the top of the conduction band is given by the sum of the trans
fer integrals between the single and double bonds, 2 l p 1 + P 2 l , and the band gap is given 
by the difference, 2iPi-P2l- The lowest-energy excited state is obtained by promoting 
an electron from the highest occupied molecular orbital ( H O M O ) , creating a hole, to 
the lowest unoccupied molecular orbital ( L U M O ) , creating an electron. One of the 

2 I P I + P 2 I P i 

F I G U R E 1. Schematic representation of the energy levels obtained from a Huckel 
model of a polyacetylene-like (2 sites per unit cell) polymer. 

fundamental approximations of Huckel theory relates to the large degree of charge 
transfer present in the low-lying excited states. Since the orbitals occupied by the elec
tron and hole are delocalized over the entire polymer, the probability of finding the 
electron and hole at remote positions on the chain, corresponding to long-range charge 
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12. YARON Semiempirical Quantum Cell Models 217 

Migration 

Y = 

n 

# 

Pauli Scattering 

# 

A contribution results only 
when the two electrons or two 
holes occupy the same orbital 

F I G U R E 2. Schematic representation of terms in eq. 5 that contribute to the 
hyperpolarizability within a Huckel model. The difference between migration and 
scattering relates to the number of electron-hole pairs in the two-photon excited 
states. 

transfer, is equal to the probability of finding the electron and hole near one another, 
corresponding to short-range charge transfer. 

The polyacetylene-like polymer of Figure 1 provides a general model system 
of a conjugated polymer as a chain of monomers connected by transfer integrals, 
Each monomer consists of two sites connected by p 2 . The energy needed to create 
charges is given by the band gap, E g =2ip 1 -P 2 l , and once these charges are created, they 
are delocalized in a one-dimensional metallic band. The band width of both the con
duction and valence bands is given by 2 ^ 1 . When P^O, the model consists of a row 
of non-interacting ethylene-like molecules, which means the band width of the con
duction and valence band is zero and the electrons and holes are immobile. As we 
increase Ipjl, the conduction and valence bands widen and the electron and hole 
become increasingly delocalized. Below, we wi l l consider the dependence of the 
hyperpolarizability on the band gap and band width. 

The absorption of the first photon in eq. 5 w i l l move electrons between bands 
and create an electron-hole pair. The second photon can then do one of two things, giv
ing rise to the two processes shown in Figure 2 (27). B y moving electrons within a 
band, the second photon can modify the electron-hole pair created by the first photon. 
We w i l l refer to this type of process, in which the second photon modifies the excita
tion created by the first photon, as a migration process. Alternatively, by moving elec
trons between bands, the second photon can create an additional electron-hole pair. 
The creation of a second electron-hole pair w i l l contribute to the hyperpolarizability 
only when it interacts with the electron-hole pair created by the first photon; other
wise, the process involves the creation of two non-interacting excitations, giving rise 
to an unlinked cluster and making no contribution to the nonlinear response. We w i l l 
refer to this second process as a scattering process, since the second photon creates an 
excitation that interacts with, or scatters with, that created by the first photon. Within 
Huckel theory, the electron-hole pairs interact only through Pauli exclusion, that is, 
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0 

1 -

0 1 
Band Width (eV) 

2 3 

F I G U R E 3. Migration and scattering contribution to the hyperpolarizability of 
Huckel theory, plotted versus the band width of the conduction and valence band, 
for a chain with 142 carbons (71 unit cells). The band gap is fixed at 1.8eV. 
Migration dominates for band widths greater than about 0.2eV. 

they interact only when the electron-hole pair created by the second photon shares an 
orbital with the electron-hole pair created by the first photon. We note that Agrawal, 
Cojan and Flytzanis (2) used the band formalism of Genkin and Mednis (22) to obtain 
the nonlinear optical response of polyacetylene within Huckel theory, and the two 
terms of the band theory expression correspond to the migration and scattering contri
butions discussed here, not to the first and second summations of eq. 5 (27). 

Figure 3 shows the migration and scattering contributions to the hyperpolariz
ability of a polyacetylene-like polymer. The results are shown as a function of the 
width of the valence and conduction band, 2 ^ 1 , holding the band gap fixed at 1.8eV. 
When the band width is zero, the second photon can not move the electron and hole 
within a band, and the migration process can not occur. Zero band width corresponds 
to Pi=0, for which the polymer of Figure 1 becomes a row of two-site molecules, and 
the hyperpolarizability is N times that of a single two-site molecule. In a Huckel 
model of a two site system, there is only one n bonding and one 7C* antibonding 
orbital, the second photon can not move the electron or hole within a band and migra
tion is not allowed. As the band width is increased, migration becomes increasingly 
important and for band widths greater than about 0.2eV, migration becomes the domi
nant nonlinear process. The Huckel parameters typically used for polyacetylene yield 
a band width of about 4eV (2,5), placing it well into the regime where migration dom
inates the response. 

The migration and scattering components of the hyperpolarizability have 
opposite signs and this can be rationalized as follows. A positive nonresonant hyper
polarizability results when the second photon sees a material that is more polarizable 
than that seen by the first photon. This is the case in migration, where the first photon 
creates an electron-hole pair, essentially changing the material from a insulator into a 
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12. YARON Semiempirical Quantum Cell Models 219 

conductor, and the second photon operates on the electron or hole. In Huckel theory, 
the scattering component is negative because the electron-hole pair created by the first 
photon suppresses, through Pauli exclusion, the creation of the second electron-hole 
pair. 

Discussion of the Huckel Model 

Huckel theory provides an intuitively appealing picture of the origin of the hyperpolar
izability. A s discussed at the end of the Cancellation of Non-Size Extensive Terms sec
tion, a large nonlinear response results when the first photon changes the material in a 
manner that makes the absorption of the second photon very different from the absorp
tion of the first photon. In the one-dimensional semi-conductor picture presented by 
Huckel theory, a large nonlinear response results because the electron-hole pair cre
ated by the first photon changes the material from an insulator into a conductor. This 
allows the second photon to do something very different than the first photon; namely, 
it can participate in a migration process and move either the electron or hole within the 
conduction or valence band. The migration process of Huckel theory involves long-
range charge transfer between monomers, and to the extent that long-range charge 
transfer dominates the hyperpolarizability, Huckel theory may capture the essential 
aspects of the nonlinear response. While it seems likely that Huckel theory does not 
provide an accurate description of the structure of the monomer, especially within our 
simple two-site model, i f the hyperpolarizability is dominated by the transfer of charge 
between monomers, the detailed structure of the monomers may not be of central 
importance. The crucial question appears to be whether or not Huckel theory provides 
a reasonable description of the long-range charge transfer process. B y parameterizing 
the model to the band gap, we have built in the energy required to perform the initial 
charge separation process. The issue is then whether or not the motion of these 
charges, once created, is adequately modelled by the simple band structure of Huckel 
theory. The following models are designed to address this issue. 

Coulomb Interactions and the Degree of Charge Transfer (S-CI model) 

Within Huckel theory, absorption of a photon generates charges that enter a one-
dimensional metallic band structure and are delocalized independently along the poly
mer chain. A s discussed above, this corresponds to an essentially infinite degree of 
charge transfer in the low-energy excited states. However, Coulomb interactions may 
limit the degree of charge transfer in the low-energy excited states. For a model to 
describe this effect, it must be possible to parameterize the model to include the cost of 
separating the electron and hole to form a charge-separated configuration. This spe
cific consequence of electron-electron interactions can be included by using singles-
configuration interaction (S-CI) theory to solve a extended Hubbard model 
(21,23,24,8). Since the excited states of S-CI theory are constrained to contain exactly 
one electron and one hole, this model can be used to model the migration process but 
not the scattering process, which involves the creation of two electron-hole pairs. 
Using S-CI theory to solve the P P P Hamiltonian of polyacetylene leads to the energy 
levels shown in Figure 4 (21). Also shown are the wavefunctions, which in periodic 
boundary conditions may be written: 

 A
ug

us
t 1

5,
 2

01
2 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e:
 M

ay
 5

, 1
99

6 
| d

oi
: 1

0.
10

21
/b

k-
19

96
-0

62
8.

ch
01

2

In Nonlinear Optical Materials; Karna, S., et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1996. 



220 NONLINEAR OPTICAL MATERIALS 
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F I G U R E 4. Energy levels and wavefunctions from a S-CI calculation on a chain of 
polyacetylene with 71 unit cells, using the P P P Hamiltonian with gas-phase Ohno 
parameters (21). Periodic boundary conditions were used and only K=0 states are 
shown. The llBu and 2 * A g states contains bound electron-hole pairs, or excitons. 
States above about 6eV contain free electron-hole pairs and would form a 
continuum on an infinitely long polymer. 

lexcited state) = 
A 

iKn c A a t
n + Ab+n|Hartree-Fock ground state) (6) 

where K is the wavevector, and a +
n and b +

n are the electron and hole creation opera
tors for Wannier functions centered on the n t h unit cell of the polymer. Figure 4 shows 
c A , the probably amplitude for charge transfer over a distance of A unit cells, for the 
two lowest-energy excited states. The degree of charge transfer in the lowest energy 
state is limited to about 4 unit cells. This limited separation between the electron and 
hole can be interpreted as the formation of a bound electron-hole pair, or exciton. 
Since we are using the gas-phase PPP parameters (5), which ignore dielectric effects 
from surrounding polymer chains, we are probably underestimating the degree of 
charge transfer. Nevertheless, the S-CI hyperpolarizability is only about a factor of 
two smaller than that obtained from a Huckel model parameterized to yield the same 
band gap and band width as that obtained in the S-CI model (21). (Since S-CI theory 
does not include scattering, we compare the S-CI results to the migration component 
of the Huckel hyperpolarizability.) This qualitative agreement suggests that even when 
charge transfer is limited to nearby unit cells, Huckel theory still captures the essen
tials of the nonlinear response. 

Cou lomb Scattering ( S D - E O M Model ) 

In the scattering process of Huckel theory, the electron-hole pairs interact only through 
Pauli exclusion, whereby the presence of the electron-hole pair created by the first 
photon suppresses the formation of a second electron-hole pair. The resulting Pauli 
scattering makes a negative contribution to the hyperpolarizability that is offset by the 
large positive contribution from migration. But by ignoring Coulomb interactions 
between electron-hole pairs, Huckel models ignore what may be an important contrib
utor to the nonlinear response, Coulomb scattering. The low-lying 2 * A g state of poly
enes^, 5,25) can be taken as evidence for strong Coulomb interactions between e-h 
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pairs, since although this state has significant character from double electron-hole pair 
configurations, it has an energy below that of the single electron-hole pair llBu state 
(25). To model Coulomb scattering requires the inclusion of double electron-hole pair 
configurations and to obtain a valid polymeric limit for the hyperpolarizability, this 
must be done in a size-consistent manner. While S-CI theory is size-consistent, the 
inclusion of double excitations within a configuration interaction formalism (SD-CI) is 
not (26,12). Instead, we use an equation-of-motion method (27) with single and dou
ble excitations ( S D - E O M ) (28). L ike S D - C I theory, S D - E O M theory allows us to 
describe excited states with up to two electron-hole pairs, but unlike S D - C I theory, it 
ignores ground state correlation. In S D - E O M theory, the ground state is constrained to 
remain the Hartree-Fock ground state, and it is only due to this constraint that it is 
size-consistent. 

To make S D - E O M calculations numerically feasible in the long chain limit, we 
use a contracted "scattering" basis set (29). In constructing the basis, we restrict the 
one-photon states, IA) and IC) of eq. 5, to the llBu state of the S-CI model. (Higher-
order configuration interaction calculations find that the 1 lBu state of polyenes is com
posed primarily of single electron-hole pair configurations (25), and both S-CI and 
exact solutions of the PPP model find that this state carries essentially all of the one-
photon intensity (21,6).) The two photon states, IB), are obtained from an S D - E O M 
calculation with a complete set of single electron-hole pair configurations, but with a 
contracted set of double electron-hole pair configurations. Since the \lBu states carries 
most of the one-photon intensity and this state contains a bound electron-hole pair, a 
llBu exciton, we expect that in the long chain limit, the primary effect of the second 
photon w i l l be the creation of another llBu exciton. States containing two noninteract
ing excitons give rise to unlinked clusters that are cancelled by the second summation 
of eq. 5 and by including basis functions consisting of all possible separations between 
two excitons, we can let the calculation decide how strongly interacting the excitons 
are and whether or not they contribute to the hyperpolarizability. When the excitons 
get close together, the interactions w i l l be strong enough to alter the form of the exci
tons. This distance defines the size of the scattering region, within which we include a 
full set of double electron-hole pair configurations, consistent with some limit on the 
maximum allowed separation between electrons and holes. This truncated basis is 
defined by two parameters, the maximum allowed separation between electrons and 
holes, and the size of the scattering region. Our results are converged with respect to 
these parameters and the S D - E O M hyperpolarizability, calculated using the PPP 
Hamiltonian of polyacetylene, is about 40% larger than that obtained with a S-CI 
model (29). Since the S D - E O M model adds Coulomb scattering between excitons to 
the S-CI model, this qualitative agreement suggests that Coulomb scattering has an 
effect but does not dominate the nonresonant nonlinear optical response. The inclusion 
of double excitations through a S D - E O M formalism does, however, have large quali
tative effects on the energy levels and thus on the resonant structure of the nonlinear 
response (28). For instance, S D - E O M theory finds a low-lying 2 1 A g , although, due to 
the lack of ground state correlation, the calculated energy is probably still overesti
mated. Further studies on the effects of Coulomb scattering on the nonlinear optical 
response are ongoing. 
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Ground State Correlation 

U p to this point, we have been discussing models that may be parameterized to include 
the Coulomb energy associated with charge separation in the excited states. This 
requires an electronic structure theory that includes the "static" correlation associated 
with mixing between a few important electronic configurations. For example, the S-CI 
l ^ u state in Figure 4 is a linear combination of a few configurations corresponding to 
different electron-hole pair separations. This "static" correlation can be viewed as 
determining the structure of the excitation created by absorption of a photon. Such 
models ignore the dynamic correlation associated with, for instance, the breakdown of 
the Hartree-Fock approximation for the ground state. Breakdown in the Hartree-Fock 
approximation mixes excited configurations into the ground state, and this mixing can 
be viewed as the presence of virtual excitations in the correlated ground state. The 
size-consistent description of these virtual excitations is a challenging problem, and it 
is unclear how these "virtual" excitations modify the form of the "actual" excitations 
created on absorption of a photon. B y using perturbation theory and ab initio Hamilto
nians, Suhai (30) and Liegener (57) demonstrated that dynamic correlation has large 
effects of both the band gap and exciton binding energy of polyacetylene. 

Solid State Effects 

It seems likely that interactions between polymer chains plays an important role in 
materials based on conjugated polymers. Beyond the local field effect, through which 
the polarization on adjacent chains modifies an externally applied electric field, inter
actions between chains may also have large effects on the electronic structure of the 
excited states (32-34). For instance, in the S-CI calculations of Figure 4, the energy 
difference between the 1 ^ state and the start of the charge-separated states, the exci
ton binding energy, is about 3.5eV. While this may be a reasonable estimate for an iso
lated polymer chain, dielectric effects from adjacent chains w i l l stabilize the charge 
separated state and lower the exciton binding energy (52). Based on Hartree-Fock cal
culations of a point charge surrounded by polyacetylene chains, we estimate the solva
tion energy of a single point charge to be about 1.5eV. The solvation energy associated 
with the charge separated states is then about 3eV. Using the electron-electron interac
tion potential of eq. 4, the Hubbard parameter U is the difference in energy between a 
neutral configuration, which has one electron per site, and a charge-separated configu
ration, which has one empty and one doubly occupied site separated by a large dis
tance. If we solvate the charge-separated state by 3eV, we lower the effective Hubbard 
parameter from l l e V to 8eV, which has a relatively minor effect on the exciton bind
ing energy (32). This screening of the electron-electron interaction potential of eq. 4 
implicitly assumes that the dielectric response of the adjacent chain is sufficiently fast 
that it follows the charge fluctuations on the excited chain. This assumes, for example, 
that the polarization of adjacent chains follows the motion of the electron-hole pair in 
the ^ B y state of S-CI theory. If instead, we assume the llBu state is non-polar and 
therefore not well solvated by the surrounding chains, then the 3eV solvation energy 
of the charge separated states is to be subtracted from the exciton binding energy, 
which in Figure 4 is about 3.5eV. The numbers reported here are rough estimates, 
especially since our estimated exciton binding energy ignores dynamic correlation 
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(30,31), but it is clear that the largest dielectric effects are obtained when the polariza
tion of the adjacent chains stabilizes the charge separated states, but is too slow to sta
bilize states containing neutral excitations, such as the 1*BU exciton state of the S-CI 
model. If this is the case, and the time-scale of the dielectric response plays an impor
tant role in determining the structure of the excited states, it seems unlikely that dielec
tric effects can be modelled by screening the electron-electron interaction potential of 
eq. 5 (8,24) and a more sophisticated treatment w i l l be required. 

Conc lud ing Remarks 

The Huckel , one-dimensional semiconductor model of conjugated polymers attributes 
the large nonlinear response to a migration process in which the first photon sees an 
insulator, and must create an electron-hole pair, and the second photon sees a conduc
tor, moving the electron or hole within a one-dimensional band. We have considered 
some specific ways in which Coulomb interactions may alter this simple picture. We 
use a simple two-site quantum cell Hamiltonian for the monomers, since i f it is charge 
transfer between monomers that gives rise to the large nonlinear response, then the 
structure of the monomers themselves is probably not of central importance. B y using 
S-CI theory to solve this quantum cell model, we allow Coulomb interactions to limit 
the degree of charge separation present in the excited states. We find that limiting the 
degree of charge transfer, while keeping the band gap and band width constant, lowers 
the migration contribution to the hyperpolarizability by about a factor of two but does 
not fundamentally change the predictions of Huckel theory. We have also considered 
the effects of Coulomb scattering on the response and again find basic agreement with 
the predictions of Huckel theory. This is the case even though these studies were done 
using unscreened, gas phase parameters that probably overestimate the strength of 
Coulomb interactions. While this work suggests that Huckel theory captures the essen
tial aspects of the nonresonant third-order nonlinear optical response, further work that 
includes higher-order effects from Coulomb interactions, and that includes interac
tions between polymer chains is clearly needed. 
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Chapter 13 

Multiphoton Resonant Nonlinear Optical 
Processes in Organic Molecules 

Paras N. Prasad and Guang S. He 

Photonics Research Laboratory, Department of Chemistry, 
State University of New York, Buffalo, NY 14260-3000 

Based on a general and phenomenological theoretical description of 
nonlinear optical responses in media, the roles and application of multi-
photon resonances in various nonlinear optical processes are discussed. The 
latest research progress in two specific application aspects, i.e. multi-
photon absorption based optical limiting and two-photon pumped 
upconverted lasing are presented. Some issues and opportunities for 
theoretical studies on optical nonlinearity of organic molecular systems are 
discussed. 

Nonlinear optical effects in organic systems have received a great deal o f attention[1]. The 
interest has been two-fold: (i) a fundamental understanding of the processes and structure-
property relationship and (ii) the important roles o f these processes in the technology of 
photonics. The development of the technology of photonics which involves photons to 
transmit, process and store information is crucially dependent on the availability o f 
materials which possess the required optical nonlinearity and at the same time meet other 
ancillary requirements. Organic structures are particularly attractive because they provide 
the flexibility to tailor their structures at the molecular level to optimize their nonlinear 
optical response. Strong nonlinear optical effects in organic structures have already been 
established[1]. However, in order to take advantage of the full potential o f structural 
tailoring ability to optimize specific optically nonlinear functional response, there is still a 
need o f an improved theoretical understanding o f the structure-nonlinear optical 
properties[2]. This deficiency in the theoretical understanding is even more so for the 
nonlinear optical processes under resonance conditions. 

A major thrust o f the current investigations has been focused on nonresonant 
nonlinear optical processes i.e. processes which are observed at the optical frequencies at 
which the system does not exhibit one or multiphoton resonances[l,2]. From a theoretical 
point-of-view, computation o f nonresonant nonlinear optical coefficients (where one 
considers only virtual excitations) is much simpler. From technological perspectives, 

0097-6156/96/0628-0225$15.00/0 
© 1996 American Chemical Society 
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nonresonant conditions are desirable for applications such as frequency mixing 
(harmonic,parametric oscillation, sum and difference frequency generation), frequency 
shifting (stimulated Raman, Brillouin, Kerr scattering), optical beam induced refractive 
index change (self-focusing, self-modulation, phase-conjugation), optical switching and 
bistable devices, and so on. Under a fully non-resonant condition there is no attenuation 
due to one-, two-, or multi-photon absorption of the nonlinear optical media at frequencies 
of the interacting optical waves. Therefore, a higher effectiveness of the desirable process 
can be obtained. As there is no photon-resonance absorption, the thermal effects can be 
avoided which in some cases are undesirable and could greatly reduce the response speed 
of optical switching or bistable devices. However, on other hand, the nonlinear response 
of a given medium can be considerably enhanced when frequencies (or their linear 
combinations) of the interacting optical waves approach to one-, two-, or multi-photon 
absorption frequencies, or to Raman-mode frequencies[3]. Typical examples are two-
photon resonance enhanced third harmonic generation and four wave frequency mixing 
(FWFM), coherent anti-Stokes spectroscopy (CARS), Raman-induced Kerr effect 
(REKE), two-photon or Raman resonance enhanced refractive index changes useful for 
optical phase-conjugation and bistability techniques. In these particular cases, a practical 
compromise between the undesirable one-, two- or multi-photon absorption induced 
attenuation of interacting beams and the desirable resonance enhancement of the signal 
beam could be achieved by controlling, for example, the concentration of the solute or 
dopant, or by using a small detuning from the center of a resonance band. One may find 
that in these cases the overall excitation of population at any real excited level via one- or 
two-photon absorption can be still neglected. For this reason we may term this kind of 
nonlinear processes as quasi-resonant processes. Naturally, there are also some other 
nonlinear optical processes, in which the real two- or multi-photon absorption are 
dominant and the population excited to upper real energy levels cannot be neglected any 
longer. Typical examples include: two-photon absorption (TPA) induced fluorescence 
emission, TPA based optical power limiting, multi-photon induced ionization, dissociation 
and photoconductivity. In general, resonance-related nonlinear optical effects are of 
considerable interest. First, they offer challenging opportunities for theoretical 
computation. Second, they also provide insight into the dynamics of excited states as they 
probe real excitations[l,3]. Finally, resonant nonlinear optical processes can also be useful 
for a number of applications such as TPA based nonlinear spectroscopy, two-photon 
pumped lasing and TPA based optical power limiting. 

In this article, we briefly review the resonant nonlinear optical processes by using 
a phenomenological description. Then we discuss experimental probes to study these 
nonlinear optical processes. Then two specific applications of the resonant nonlinear 
optical processes are presented: (i) up-conversion lasing and (ii) optical power limiting. 
Finally we review the status of microscopic theory in relation to predicting resonant 
nonlinear optical properties and conclude with opportunities which exist for theory and 
computational work in this field. 

Theoretical Background 

Nonlinear optical processes occur under the action of an electric or optical field when the 
polarization of a medium is no longer expressed only by the linear term in the electric field. 
In such a case the polarization vector P of the medium is expressed as a power series in the 
electric field vector E as[l,3] 
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0 ) 

Where x ( 1 ) is the linear susceptibility of the medium, x ( 2 ), X ( 3 ) and X ( n ) are the second-, 
third- and n-th order nonlinear susceptibilities, respectively. In general, x ( 1 ), X ( 2 ) - and x ( n ) 

are tensor coefficients depending on symmetry characteristics of a given optical medium. 
It can be theoretically proved that under dipole approximation, all even-order terms of 
nonlinear susceptibilities ( x ( 2 ), X ( 4 ) •••) should be zero for any kind of isotropic or centro
symmetric media[3]. For simplicity of qualitative discussions, by neglecting the tensor 
property of the different susceptibilities and the vector property of the electric field E , the 
generalized refractive index of the medium can be expressed as 

In this expression is the linear refractive index determined by x ( 1 ) ; ^ , n 2... are nonlinear 
refractive index coefficients determined by x ( 2 ), X ( 3 ) •••> respectively. The second-order 
susceptibility x ( 2 ) describes second harmonic generation (SHG) and optical parametric 
oscillation (OPO); nt describes linear electro-optical modulation (Pockels efFect)[3]. The 
third order nonlinear susceptibility x ( 3 ) describes third harmonic generation (THG) and 
general four wave mixing (FWM); n 2 describes the intensity dependent refractive index 
change. Near a resonance, the generalized refractive index becomes complex, i.e. n ,̂ nu 

n2...are also complex. In such a case, the imaginary part of % represents the linear 
absorption properties of the medium, and the real part of rio determines the frequency 
dispersion of the real refractive index. The imaginary parts of the higher order terms 
describe nonlinear absorption (or gain) properties. For isotropic or centro-symmetric 
media, Eq. (2) can be simplified as 

where I « E 2 represents the intensity of the optical field. In resonant interaction for this 
kind of media, the real part of n2' (or x ( 3 ) ) describes an induced refractive index change 
proportional to I, and the imaginary part of n 2 ( or x ( 3 ) ) describes two-photon absorption 
(TPA), as well as (Stokes) Raman gain effect or reverse (anti-Stokes) Raman attenuation 
effect. Similarly, the imaginary part of n4' (or x ( 5 ) ) describes a three-photon absorption 
process. 

At a molecular level, in a way similar to Eq. (1), the optical field induced dipole 
moment vector p in the molecule can be expressed as[l] 

n - n 0 • nxE • iijEB • n 3 EEE • n 4 EEEE (2) 

n • n 0 • 112I • 114I (3) 

p - aE+$EE+y EEE+6 EEEE +{EEEEE (4) 
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where a is the linear polarizability , and p, y> C • are different orders of 
hyperpolarizabilities of a molecule. In general, a, p, y ... are tensor coefficients. In 
principle, if we know the quantized energy-level structures and the related complete 
eigenfiinctions for a given molecular system, the a, P, Y ••• can be theoretically 
determined[2]. Furthermore, if we also know the macroscopic symmetric property of an 
assembly consisting of a great number of molecules, and assume weak Van der Waals' 
interaction, the different order susceptibilities, x(1)> X ( 2 )«- x ( n ) can also be determinedfl]. 

Experimental Methods to Probe Multiphoton Resonances 

There are a number of experimental techniques which can be used to investigate 
multiphoton resonances. In our laboratory we have used the following techniques. 

(i) Nonlinear transmission: Here one studies the optical input-output relation, as 
will be discussed later for optical power limiting function. Then from the theoretical 
modeling of the quantitative dependence of the output intensity on the input intensity one 
can determine whether one is dealing with two-photon or higher order absorption, and the 
corresponding nonlinear absorption coefficient can be directly measured[4]. The 
disadvantage of this simple method is that it does not provide one with the information as 
to whether the nonlinear absorption is a direct multiphoton absorption or a sequential 
stepwise multiphoton (more than one step) absorption. 

(ii) Up-converted emission:There are some systems which show frequency up-
converted fluorescence emission based on two- or multi-photon excitation. The spectral 
properties of two- or multiphoton excitation related absorption and upconverted emission 
of the samples can be easily investigated if the excitation source is wavelength tunable. One 
advantage of this technique is the high sensitivity for detecting the upconverted emission 
signal by using very sophisticated photon-detection systems. This technique can be also 
employed to identify the mechanisms that cause the observed up-converted emission. For 
example, most TPA induced fluorescence emission measurements clearly demonstrated a 
quadratic dependence of its fluorescence on the input excitation intensity[5]. 

(iii) Transient absorption: This is a two beam pump-probe experiment where the 
absorption (or transmission) of a weak probe pulse in the presence of a strong pump pulse 
is monitored. By conducting a time-resolved experiment in which the time delay between 
the pump and the probe pulses is varied, one can get direct information on whether the 
absorption is a sequential stepwise multiphoton process or a direct multiphoton process[6]. 

(iv) Four-wave mixing: In this method, two pulses cross at an angle to produce an 
intensity modulation due to interference. The intensity modulation can lead to refractive 
index modulation by several different possible mechanisms[l]: (a) the intensity dependent 
refractive index change such as n2' I term of equation (3) above, which is a purely 
electronic effect and occurs both under nonresonant and resonant conditions; (b) change 
in the linear refractive index due to population redistribution along the excited levels, which 
is highly sensitive to intensity and wavelength tuning change of the incident excitation 
beams; and (c) thermal change of refractive index due to radiationless transition processes, 
which usually possesses a much longer relaxation time. 

The resultant refractive index modulation, which forms a grating is then probed by 
the diffraction of a probe pulse. In the time resolved study, the probe pulse is delayed with 
respect to the pump pulses and, therefore, one can monitor the build-up and the decay of 
the refractive index grating. Because different grating mechanisms are characterized by 
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13. PRASAD & H E Multiphoton Resonant NLO Processes 229 

different intensity dependence and temporal responses, therefore, some useful conclusions 
could be abstracted by using this technique[7]. 

Applications of Multiphoton Resonances 

Multiphoton resonance has been widely used for nonlinear optics, laser technology and 
opto-electronics. The typical examples can be summarized as follows. 

(1) multiphoton resonance enhanced optical frequency mixing techniques including 
optical harmonic generation, sum or difference frequency generation, optical parametric 
oscillation and amplification; 

(2) multiphoton-resonance based nonlinear spectroscopic techniques, such as 
Doppler-free two-photon absorption (TPA) spectroscopy, upconverted emission 
spectroscopy, multiphoton ionization spectroscopy etc.; 

(3) two-photon resonance enhanced refractive index change, such as T P A enhanced 
or Raman-resonance enhanced refractive index change; 

(4) multiphoton resonance excited dissociation, ionization, energy transfer as well 
as isotopic separation of molecular systems; 

(5) multiphoton absorption based optical power limiting that can be used for 
protection of human eye and optical sensors; 

(6) multiphoton pumped frequency upconverted emission and lasing devices. 
Our research group is currently focusing on two specific applications utilizing 

organic molecular systems: multiphoton absorption based optical limiting and frequency 
upconversion lasing. 

Multi-Photon Absorption Based Optical Limiting 

Optical limiting effects and devices are becoming more interesting in the area of nonlinear 
optics and opto-electronics because of their special application potential. There are several 
different mechanisms which can lead to optical limiting behavior, such as reverse saturable 
absorption (RSA), two-photon absorption (TPA) , nonlinear refraction (including all types 
of beam induced refractive index changes), and optically induced scattering [8]. A number 
of research studies of optical limiting effects related to T P A processes have been reported, 
most o f them have focused on semiconductor materials [8]. According to the basic 
theoretical consideration, i f the beam has a Gaussian transverse distribution in the medium, 
the T P A induced decrease of transmissivity can be expressed as [8,9] 

where I 0 is the incident intensity, L the thickness of a given sample, and p is the T P A 
coefficient of a given medium. Furthermore, the T P A coefficient P (in units o f cm/GW) 
o f the sample is determined by 

T(I^I(L)/I0-[\n(l *IJL P ) ] / / / p (5) 

P-OjA^-OjAT^xlO (6) 

Here, N 0 , o 2 , a n d d 0 are the molecular density (in units of 1/cm3), molecular T P A 
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coefficient or cross-section (in units of cm4/GW), and concentration (in units of M/L) of 
the dopant in a solid matrix, respectively. Finally, N A is the Avogadro number. For a 
known experimental relationship between T(Io) and IQ, the value of P or o 2 coefficient (or 
cross-section) can be determined. In some reference papers the molecular TPA cross-
section was also defined as 

o2'-hvo2 (7) 

where hv is the energy of an incident photon, o 2' is in units of cm4-sec. 
It is well known that many organic compound systems exhibit a strong two-photon 

absorption (TPA) property. Recently we have surveyed quite a number of existing or newly 
synthesized organic compounds for TPA study[4]. The compound 2,5-benzothiazole 3,4-
didecyloxy thiophene (or BBTDOT hereafter), possessed both a large molecular TPA 
coefficient and very high solubility in common organic solvents. For this reason BBTDOT 
can be further used to dope into solid matrices for TPA purpose. Preliminary experimental 
results on optical limiting and stabilization behavior were obtained in BBTDOT doped 
solid matrix rods[10]. The incident beam was provide by an ultrashort-pulse laser source 
with a wavelength of602 nm, 
pulsewidth of 0.5 ps, spectral 
width of 60 cm"1, and 
repetition rate of 30 Hz. The 
transmissivity as a function of 
the input intensity is shown in 
Fig. 1 for two BBTDOT 
doped samples:(a) a 2.4 cm-
long epoxy rod with a dopant 
concentration of 0.09 M / L 
and (b) a 1.1 cm-long 
composite glass rod with a 
dopant concentration of 0.1 
M/L. It shows a clear optical 
limiting effect. At an intensity 
level of 500 MW/cm 2, the 
transmissivity of the samples 
decreased to less than 50% of 
its initial value. In Fig. 1 the 
points represented the 
measured data, and the lines 
were the best fitted curves by 
using Eq. (5). Based on these 
nonlinear absorption 
measurements the molecular Figure 1 Transmissivity as a function of input intensity for 
TPA cross-section of a BBTDOT doped L=2.4 cm-long epoxy rod (a) and L=l.l 
B B T D O T in the epoxy and cm-long composite glass rod (b). 
composite glass rods were 
estimated as o2'=1.4xl0"47cm4-sec and o2'=3x\0'47 cm4-sec, respectively. 
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13. PRASAD & H E Multiphoton Resonant NLO Processes 231 

We recently synthesized and studied a new dye, trans-4-[p-(N-ethyl-N-
-hydroxyemylamino)styryl]-N-methylpyridinium tetraphenylborate, abbreviated as ASPT 
hereafter. This dye manifested a superior one-photon pumped lasing performance[l 1]. Our 
recent investigation showed that ASPT possessed much greater TPA cross-section in 
comparing with Rhodamine and other commercial dye materials[12]. 

For studying the two-photon absorption induced power limiting effect at 1.06 urn 
for this material, the incident near IR laser beam was provided by a Q-switched Nd: Y A G 
pulsed laser source with a wavelength of 1.06 urn, pulsewidth of -8 ns, spectral width of 
~1 cm" 1, and repetition rate of 3 Hz. A 2 cm-long ASPT doped epoxy (EPO-TEX301) rod 
with a concentration of do = 0.004 M / L was used. The measured transmitted intensity as 
a function of the incident intensity is shown in Fig. 2[12]. Here the solid line is the 
theoretical curve predicted by Eq. (5) by using a best fit parameter of p = 6 cm/GW, and 
the dashed line is given by assuming that there is no TPA ( P=0). In Fig. 2 one can see that 
there is a clear TPA induced optical limiting behavior at the incident intensity levels of 50-

2 cm-long ASPT doped epoxy rod 

50 100 150 200 

Incident Intensity (MW/cm2) 

Figure 2 Transmitted intensity as a function of the 1.06 \im input intensity 
for a 2 cm-long ASPT-doped epoxy rod. 

250 MW/cm2. Based on the known value of p = 6 cm/GW and Eqs.(6) and (7), the values 
of molecular TPA cross-section of ASPT in epoxy can be estimated as o 2 = 4.7X10"46 cm 4-
sec. This measured value of o 2 ' for dye ASPT in the EPO-TEX301 matrix is greater than 
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the corresponding values of Rhodamine dyes by 2-3 orders of magnitude [13,14]. 
In addition, three-photon absorption has been also observed in several solid and 

liquid materials as well as some gas systems[15-19]. In principle, three- or multi-photon 
absorption mechanisms can also be employed for optical-limiting performance. For 
instance, we have found that BBTDOT could demonstrate relatively strong upconverted 
blue fluorescence and optical power limiting behavior based on three-photon absorption 
(3PA) pumped with Q-switched 1.06 urn laser pulses. 

According to the basic theoretical consideration of three-photon absorption, the 
intensity change of an excitation beam along the propagation (z axis) direction can be 
written as 

dl(z)/dz.-yl\z) (8) 

where y is the three-photon absorption coefficient of the given sample medium. The 
solution of Eq. (8) can be simply obtained as[20] 

(9) 

a 

here IQ is the incident intensity 
of the excitation beam and z 
is the propagation distance 
within the sample medium. 
From Eq. (9) one can see that 
the three-photon absorption 
coefficient y can be 
experimentally determined by 
measuring the transmitted 
intensity as a function of the 
incident intensity for a given 
medium with a known 
thickness of the sample. Fig. 3 
shows the measured 
transmitted 1.06-um laser 
beam intensity versus the 
incident intensity from a 10 
cm-long liquid cell filled with 
BBTDOT solution in T F H of 
0.18 M / L concentration[20]. 
For comparison, the hollow 
circles represent the data 
obtain from a 10 cm-long pure 
THF solvent sample. The transmitted intensity dependence on the incident intensity clearly 
shows an optical power limiting behavior. The solid line in Fig. 3 is the theoretically fitted 

Incident Intensity (MW/cm2) 

Figure 3 Transmitted intensity as a function of the incident 
intensity of the 1.06 um beam for a solution sample (solid 
squares) and pure THF sample (hollow circles). 
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curve given by Eq. (9) by using the best fit value of y = 2.7xl0"18 cm3/W2. It is known that 
for a given solution sample the y value is related to the solute concentration do (in units of 
M/L)by 

Y - ° 3 ^ o * 1 0 " 3 0 ° ) 

where o 3is the molecular three-photon absorption coefficient or cross-section in units of 
cm 6AV 2 and N A the Avogadro number. In some reference papers the molecular three-
photon absorption cross-section was defined as 

o W * v ) 2 (11) 

where hv is the photon energy of the excitation beam, and the o' 3 is in units of cm6-sec2. 
Based on the known y value of the measured solution sample, the values of o 3 = 2.5xl0"38 

cmVW2 and o' 3 = 8.8xl0"76 cm6-sec2 can be obtained for BBTDOT molecule system in 
THF. 

Two-Photon Pumped Lasing in Novel Dye Doped Bulk Matrixes 

Frequency upconversion lasing is an important area of research and is becoming more 
interesting and promising in recent years. Compared to other coherent frequency 
upconversion techniques, such as optical harmonic generation or sum frequency mixing 
based on second- or third-order nonlinear optical processes, the main advantages of 
upconversion lasing techniques are i) elimination of phase-matching requirement, ii) 
feasibility of using semiconductor lasers as pump sources, and iii) capability of adopting 
waveguide and fiber configurations. To date, two major technical approaches have been 
used to achieve frequency upconversion lasing. One is based on direct two-photon ( or 
multi-photon) excitation of a gain medium (two-photon pumped); the other is based on 
sequential stepwise multi-photon excitation (stepwise multi-photon pumped). Since 1970's, 
several reference papers reported experimental results of two-photon pumped (TPP) lasing 
behavior in organic dye solutions[21-24]. Recently, TPP upconversion stimulated emission 
was reported in a D C M dye doped P M M A channel waveguide configuration[25]. 

In order to achieve TPP lasing the gain medium should have a larger TPA 
coefficient and a higher fluorescence yield for an appropriate pump wavelength. As we 
mentioned above, the dye ASPT exhibits high molecular TPA cross-section and excellent 
solubility, therefore, it can be used for two-photon pumped lasing. Pumped with a 
nanosecond 1.06 um pulsed laser beam, we have achieved, to the best of our knowledge, 
the first two-photon pumped cavity lasing in ASPT-doped bulk matrix (polymer, solgel 
glass, and V Y C O R glass) rods. 

In our experimental set-up, the input pump IR laser beam was provided by a Q-
switched Nd: Y A G pulsed laser source with a wavelength of 1.06 um, pulsewidth of ~ 10 
ns, spectral width of ~ 1 cm"1, angular divergence -1.3 mrad, and a variable repetition rate 
of 1-10 Hz. A 7 mm-long ASPT doped poly-HEMA rod (d>8xlO" 3M/L) was used for 
lasing observation[12]. Once the prmp intensity increased to a certain threshold level, 
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simultaneous forward and backward 
highly directional superradiation could be 
observed from the rod samples. In order 
to achieve cavity lasing, two parallel 
plane dielectric-coating mirrors were 
employed to form a cavity. Fig. 4 shows 
the emission spectra of the same 7 mm-
long ASPT doped rod sample under 
different excitation conditions: (a) 532 
nm one-photon excited fluorescence 
emission, (b) 1.06 urn two-photon 
excited fluorescence emission, and (c) 
1.06 um pumped cavity lasing. One can 
find that cavity lasing occurred at the 
central region of the TPA induced 
fluorescence band, but the lasing band 
width (~8 nm) was much narrower than 
the ordinary one-photon excited 
fluorescence band width (-60 nm) due to 
lasing threshold requirement. 

The lasing output energy versus 
the pump input energy is shown in Fig. 5 
for the rod cavity lasing. In Fig. 5, the 
solid line is the best fitted curve based on 
the square law that should be followed 
for a two-photon excitation process. 

£» 540 560 5B0 GQ0 62D 640 

Figure 4 (a) one-photon fluorescence, (b) two-
photon fluorescence, and (c) two-photon pumped 
lasing. 

Computational Methods: Issues and 
Opportunities 

Quantum mechanical approach to 
compute the two-photon absorption 
cross-section of molecular systems have 
been investigated by many 
researchers[26-28]. Most of the past 
approaches have used the sum-over
states approach which is a perturbative 
approach involving summation of mixing 
with many states. In the sum-over-states 
approach the third-order molecular 
nonlinear coefficient y can be expressed 
as[27,28] 

2 -

0.4 0.6 0.8 1.0 12 1.4 

RmpEneq2y(mJ) 

Figure 5 600 nm lasing output as a 
function of 1.06 um pump energy. 
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K(-G>; o , o , - o ) c 4 

t < 0 k J ^ < * k j T > < J k J ^ < / | y > > ^ , <ofrJr><J)rfr><o\r<»><k\rJo> 
(12) 

Near a two-photon resonance, the energy (frequency) is taken as complex 

(13) 

Then the imaginary part of y is related to the two-photon absorption cross-section. One 
uses a semi-empirical approach for this method. 

The second approach used to calculate nonlinearities of organic structures is the 
derivative approach[2]. In this method one calculates the energy (or the induced dipole 
moment) in the presence of the field. Then various derivatives of the energy provides the 
various nonlinear optical coefficient. We have extensively used time-dependent coupled 
perturbed Hartree-Fock method (TDCPHF) at the ab-initio level to obtain analytically the 
various derivatives as a function of the frequency of the optical field [27-29]. This method, 
therefore, provides frequency dependent nonlinear coefficients. However, this method in 
the past has been used only for computation of nonlinear coefficients under non-resonant 
conditions. The method can be extended to compute also the imaginary components of the 
nonlinear coefficients and, therefore, the various multiphoton absorption coefficients by 
making the frequency a complex quantity. The method would require input of an 
appropriate damping parameter. Also, the TDCPHF method as used in the past has not 
involved electron-correlation, which may play an even more important role in the 
calculation of resonant nonlinear optical coefficients. 

In order to design new molecular structures with enhanced two-photon (or 
multiphoton absorption), at a desired wavelength, the issues to be addressed by 
computational chemists are the prediction of the position, dispersion and the strength of 
two-photon and higher order resonances. Such prediction can guide efforts of synthetic 
chemists in tailoring chemical structures to enhance the multiphoton absorption and to shift 
energy in appropriate direction by chemical modifications. We, therefore, see a 
tremendous opportunity for computation chemistry in understanding the relationship 
between chemical structure and the multiphoton resonance probability. 
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Bond alteration effect—Continued 
third-order N L O susceptibility of 

conjugated systems, 15-16 
Bond charge model, structure-NLO 

property relationship, 9 
Bond parameter model, structure-NLO 

property relationship, 9 
Bulk electronic susceptibilities, definition, 2 
frans-Butadiene 

polarizabilities and second 
hyperpolarizabilities, 84-91,97,98/ 

third harmonic generation, 84,95-96r ,100 

C 

Charge transfer, degree, description by 
singles configuration interaction 
model, 219-220 

Chemical bond formation, role in N L O 
properties, 13-14 

Complete neglect of differential overlap 
theory, parameter adjustment, 117 

Configuration, role in configuration 
effect on linear and N L O properties 
of organic molecules, 116-129 

Configuration interaction approach 
calculation of electron correlations, 

118-119 
higher excited configuration effect on 

linear and N L O properties of 
organic molecules, 116-129 

Conformational contribution, model 
Hamiltonians for N L O properties 
of conjugated polymers, 206 

Conjugated organic molecules, structure-
N L O property relationship, 10-11 

Conjugated polymers 
idealized planar backbones, 190/, 191 
model Hamiltonians for N L O 

properties, 189-207 
N L O properties, 58-77 
semiempirical quantum cell models of 

third-order N L O response, 211-223 
Correction vector approach, higher excited 

configuration effect on linear and 
N L O properties of organic molecules, 
123,125 

Correlated frequency-dependent 
polarizabilities, calculation, 49-53 

Coulomb interactions, description by singles 
configuration interaction model, 219-220 

Coulomb scattering, single and double 
equation-of-motion model, 220-221 

Coupled-cluster theory 
electron correlation, 39-41,118-119 
frequency dependence, 49,52r 

Coupled Hartree-Fock theory, 34 
Coupled Hartree-Fock equation, 

derivation, 176-177 
Coupled perturbed Hartree-Fock theory 

basis sets, 35 
calculation of static hyperpolarizability, 

59-62 
Coupled perturbed Kohn-Sham theory, 

static properties, 148-149 
Crystal orbital approach, calculation 

of N L O properties of conjugated 
polymers, 58-59 

D 

Degree of charge transfer, description 
by singles configuration interaction 
model, 219-220 

DeMon, description, 151-153 
Density functional theory 

application to linear and N L O property 
calculation, 165 

combination with time-dependent 
Hartree-Fock, 165-172 

comparison to other quantum chemical 
methods, 146,161 

optical properties, 145-161 
potential applications, 146,161 
use for molecular hyperpolarizability 

calculation, 54 
Derivative method, multiphoton resonant 

N L O processes in organic molecules, 235 
Dipole moment, calculation from density-

functional theory, 153 
Dipole polarizability, definition, 30 
Direct current induced second harmonic 

generation experiments, discrepancy 
with theoretical results, 23-26 
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INDEX 

Dispersion, role in molecular 
hyperpolarizabilities, 44t ,45 

Disubstituted benzenes, third-order 
nonlinear electric susceptibility 
theoretical studies, 112 

Doubly substituted benzene molecules, 
stmcture-NLO property relationship, 11 

Dye doped bulk matrices, two-photon 
pumped lasing, 233-234 

Dynamic hyperpolarizability 
electron correlation effect, 69 
quasi-one-dimensional periodic 

polymers, 174-187 
Dynamic mean polarizability, calculation 

from density-functional theory, 157,158/ 
Dynamic properties 

density-functional theory 
dynamic mean polarizability, 157,158/ 
excitation spectra, 157-161 
oscillator strengths, 159 

methodology, 147-151 
DynaRho, description, 151-153 

E 

E F I S H effect, 103 
Eigenfunction, definition, 104 
Electric dipole in z direction, 29 
Electric field induced second harmonic 

generation, See E F I S H 
Electric susceptibilities 

extension of theoretical description to 
higher order terms, 102 

nonlinear, See Third-order nonlinear 
electric susceptibility theoretical studies 

relationship to molecular 
hyperpolarizabilities, 26-27 

Electron correlation 
coupled-cluster theory, 39-41 
importance, 117-118 
many-body perturbation theory, 39-41 
role 

dynamic hyperpolarizability, 69 
linear and N L O properties, 164-165 
molecular hyperpolarizabilities, 38-41 
static hyperpolarizability, 62-65,67 

241 

Electron-electron interactions, role in 
Huckel theory, 211-223 

Electrooptic effect 
applications of materials, 2-3 
description, 2 

Equation of motion, concept, 49-50 
Equation-of-motion-coupled-cluster 

method 
calculation of correlated frequency-

dependent polarizabilities, 49-53 
correlated frequency dependent 

polarizabilities, 49-53 
Even-parity states and excitons, model 

Hamiltonians, 202-203,205 
Exact dynamic nonlinear coefficients, 

model Hamiltonians, 194-198 
Excitation spectra, calculation from 

density-functional theory, 157-161 

F 

Finite-field self-consistent field method, 
higher excited configuration effect on 
linear and N L O properties of organic 
molecules, 122 

Finite oligomer method, calculation of 
N L O properties of conjugated 
polymers, 58 

First hyperpolarizability 
definition, 30 
water, 84,92-94,98-100/ 

First principles of N L O coefficients, 8 
Four-wave mixing, multiphoton resonant 

N L O processes in organic molecules, 
228-229 

Frequency-dependent polarizabilities and 
second hyperpolarizabilities of polyenes 

experimental procedure, 134-135 
polarizability vs. frequency, 135-137 
second hyperpolarizability vs. 

frequency, 137-143 
Frequency dependence 

coupled-cluster theory, 49,52f 
many-body perturbation theory, 49,52f 
role in molecular hyperpolarizabilities, 

41^9 ,52 
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G 

Y, See Second hyperpolarizabilities 
Ground-state correlation, semiempirical 

quantum cell models, 222 

H 

Hamiltonian(s), models for N L O properties 
of conjugated polymers, 189-207 

Hamiltonian and solution method models, 
third-order N L O response of conjugated 
polymers, 213-214 

Hartree-Fock-local density-functional 
combination method for linear and 
N L O property calculation 

advantages, 172 
applications 

C O , 170-172 
H 2 0 , 170-171 
H F , 170-172 

limitations, 172 
one-electron equations, 166-168 
perturbation theory, 168-169 
self-consistent field calculations, 169-170 

Hartree-Fock theory 
basic set selection, 35 
coupled perturbed Hartree-Fock theory, 

35 
finite-field procedure, 34 
time dependent, See Time-dependent 

Hartree-Fock theory 
High-order time-dependent Hartree-Fock 

theory 
formulations, 80 
reasons for development, 79-80 
sum-over-states representation of 

N L O response properties, 80-100 
Higher excited configuration effect on 

linear and N L O properties of organic 
molecules 

computational methodology 
correction vector approach, 123,125 
finite-field self-consistent field 

method, 122 
Rumer spin pairing method for spin 

symmetry adaptation, 119,121-122 
sum-over-states method, 122-123 

Higher excited configuration effect on 
linear and N L O properties of organic 
molecules—Continued 

experimental procedure, 116 
/7-nitroaniline, 125,126f ,128 
rran.s-octatetraene, 124r ,125,127-128 

Highest occupied molecular orbital -
lowest unoccupied molecular orbital 
gap, calculation using Hartree-Fock-
local density-functional combination 
method, 164-172 

Hubbard models 
description, 213 
N L O properties of conjugated polymers, 

192-194 
Huckel model 

description, 212 
N L O properties of conjugated polymers, 

192-194 
third-order N L O response of conjugated 

polymers, 211-223 
Hydrofluoric acid, Hartree-Fock-local 

density-functional combination method 
for linear and N L O property 
calculation, 170-172 

Hyperpolarizabilities 
molecular, See Molecular hyperpolariz

abilities from quantum chemistry 
polyenes, frequency dependent, See 

Frequency-dependent polarizabilities 
and second hyperpolarizabilities of 
polyenes 

quasi-one-dimensional periodic 
polymers, 181-183 

static, See Static hyperpolarizability 

Independent particle approximation, 
description, 150-151 

Interchain interactions, polyacetylene, 
72-76 

Interchain mechanism, third-order 
material structure-NLO property 
relationship, 16 

Intermediate neglect of differential overlap 
calculation of molecular 

hyperpolarizabilities, 36,37f 
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INDEX 243 

Intermediate neglect of differential 
overlap—Continued 

parameter adjustment, 117 
Intermediate neglect of differential 

overlap Hamiltonian, higher excited 
configuration effect on linear and N L O 
properties of organic molecules, 116-129 

Intermolecular interaction, role in N L O 
properties, 13-14 

Intramolecular charge transfer, role in 
structure-NLO property relationship, 
11-13 

K 

Kohn-Sham theory, static properties, 
147-148 

L 

Levine-Bethea model, structure-NLO 
property relationship for second-order 
materials, 13-14 

Linear combination of atomic orbital 
approximation, one-electron wave 
functions, 178-180 

Linear optical properties 
calculation using Hartree-Fock-local 

density-functional combination 
method, 164-172 

factors affecting accuracy of prediction, 
164 

organic molecules, higher excited 
configuration effect, 116-129 

Linear polarization 
definition, 5 
susceptibilities, 2 

Linear susceptibility tensor, definition, 5 
Local density approximation, time 

dependent, dynamic property 
calculation, 150-151 

Local density-functional-Hartree-Fock 
combination method for linear and 
N L O property calculation, See 
Hartree-Fock-local density-
functional combination method for 
linear and N L O property calculation 

M 

Macroscopic susceptibility tensor, 5-6 
Many-body perturbation theory 

electron correlation, 39-41 
frequency dependence, 49,52f 

Mean first hyperpolarizability of water, 
calculation from density-functional 
theory, 153,154* ,155 

Mean polarizability, calculation from 
density-functional theory, 153-155,156/ 

Medium, role in N L O materials, 72 
Microscopic polarizabilities in 

nonabsorbing medium, quantum 
mechanical theory, 6-7 

Microscopic polarizability tensors, 5-6 
Microscopic susceptibility tensor, 5-6 
Model(s), N L O coefficients, 191 
Model Hamiltonians for N L O properties 

of conjugated polymers 
conformational contributions, 206 
evolution from molecular to polymeric 

responses, 197-202 
exact dynamic nonlinear coefficients, 

194-198 
Hubbard models, 192-194 
Huckel model, 192-194 
Pariser-Parr-Pople model, 192-194 
vibronic contributions, 204/205-206 

Moeller-Plesset perturbation theory, 
N L O properties of quasi-one-
dimensional periodic polymers, 174-187 

Molecular hyperpolarizabilities from 
quantum chemistry 

correlated frequency dependent 
polarizabilities 

equation-of-motion-coupled-cluster 
method, 49-53 

time-dependent Hartree-Fock theory, 
51-53 

electron correlation, 38-41 
frequency dependence 

dispersion effect, 44t ,45 
equation, 41-43 
time-dependent Hartree-Fock 

calculation method, 45-49,52 
future extensions, 53-54 
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Molecular hyperpolarizabilities from 
quantum chemistry—Continued 

Hartree-Fock self-consistent field 
theory, 34-35 

perturbation theory of molecular 
hyperpolarizabilities, 26-31 

semiempirical methods 
intermediate neglect of differential 

overlap, 36,371 

M O P A C , 36,38 
static hyperpolarizability evaluation, 

32-34 
Molecular optical properties, calculation 

from density-functional theory, 145-161 
Molecular to polymeric responses, 

evolution, 197-202 
Molecules, Hartree-Fock-local 

density-functional combination 
method for linear and N L O property 
calculation, 164-172 

Monosubstituted benzenes, third-order 
nonlinear electric susceptibility 
theoretical studies, 112 

M O P A C , calculation of molecular 
hyperpolarizabilities, 36,38 

Multiphoton absorption based optical 
l imiting, multiphoton resonant 
N L O processes in organic 
molecules, 229-233 

Multiphoton resonant N L O processes 
in organic molecules 

applications, 229 
computational methods 

derivative method, 235 
sum-over-states method, 234-235 

experimental methods 
four-wave mixing, 228-229 
nonlinear transmission, 228 
transient absorption, 228 
up-converted emission, 228 

multiphoton absorption based optical 
l imiting, 229-223 

studies, 225-226 
theory, 226-228 
two-photon pumped lasing in novel dye 

doped bulk matrices, 233-234 

N 

/?-Nitroaniline 
higher excited configuration effect on 

linear and N L O properties, 
125,126f,128 

third-order nonlinear electric 
susceptibility theoretical studies, 112 

Nitrogen-containing aromatics, t h i r d -
order nonlinear electric susceptibility 
theoretical studies, 112 

Nonlinear electric susceptibilities, third 
order, See Third-order nonlinear 
electric susceptibility theoretical studies 

Nonlinear optical coefficients 
description, 189 
first principles calculation, 8 
reasons for models, 191 
studies, 189,191 

Nonlinear optical effects 
organic systems, reasons for interest, 225 
silica glass, 17-18 

Nonlinear optical materials 
medium effect, 72 
potential applications, 58 
role of theory and modeling in 

development, 18 
theoretical modeling, 8-17 

Nonlinear optical phenomena 
processes, 1 
quantum mechanical theory, 4-8 
second-order examples 

electrooptic effect, 2 
N L O phenomena, 2 
second harmonic generation, 2 

third-order materials, development 
of all-optical computing and signal 
processing, 3-4 

Nonlinear optical processes 
applications, 8-9 
multiphoton resonant, organic 

molecules, 225-235 
Nonlinear optical properties 

calculation using Hartree-Fock-local 
density-functional combination 
method, 164-172 
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INDEX 245 

Nonlinear optical properties—Continued 
conjugated polymers 

crystal orbital approach, 58-59 
electron correlation effect 

dynamic hyperpolarizability, 69 
static hyperpolarizability, 62-65,67 

finite oligomer method, 58 
frequency dependence of dynamic 

hyperpolarizability, 66/,67-69,70f 
future directions, 73,76 
influencing factors, 59 
interchain interactions in 

polyacetylene, 72-76 
model Hamiltonians, 189-207 
semiempirical quantum cell models, 

211-223 
static longitudinal hyperpolarizability 

at coupled perturbed Hartree-Fock 
level, 59-62 

vibrational hyperpolarizabilities, 
69,71-72 

factors affecting accuracy of 
prediction, 164 

organic molecules, higher excited 
configuration effect on linear and 
N L O properties of organic 
molecules, 116-129 

polyenes, studies of behavior vs. 
length, 133 

quasi-one-dimensional periodic polymers 
analytical problems, 174-175 
quasi-one-dimensional periodic 

polymer-laser pulse interaction, 
183-186 

static-time-dependent electric field 
interaction 

calculation of polarizabilities and 
hyperpolarizabilities, 181-183 

derivation of coupled Hartree-Fock 
equation, 176-177 

linear combination of atomic orbital 
approximation for one-electron 
wave functions, 178-180 

Moeller-Plesset perturbation theory, 
180-181 

unbounded operator problems, 175-176 
relationship to structure, 9-14 

Nonlinear optics 
early theoretical studies, 102 
importance, 174 

Nonlinear polarization 
definition, 5 
susceptibilities, 2 

Nonlinear response properties in time-
dependent Hartree-Fock theory, 
sum-over-state representation, 79-100 

Nonlinear transmission, multiphoton 
resonant N L O processes in organic 
molecules, 228 

O 

trans -Octatetraene, higher excited 
configuration effect on linear and 
N L O properties, 124M25,127-128 

Oligomers, model Hamiltonians for 
N L O properties, 189-207 

One-electron equations, Hartree-Fock-
local density-functional combination 
method, 166-168 

One-electron wave functions, linear 
combination of atomic orbital 
approximation, 178-180 

Optical frequency mixing phenomena, 1 
Optical Kerr effect, hyperpolarizability 

calculation, 51 
Optical l imiting, description, 4 
Optical properties 

density-functional theory 
computational programs 

deMon, 151-153 
DynaRho, 151-153 

dynamic properties 
dynamic mean polarizability, 157,158/ 
excitation spectra, 157-161 
oscillator strengths, 159 

methodology 
dynamic properties, 149-151 
static properties, 147-149 

potential applications, 146,161 
static properties 

dipole moment, 153 
mean first hyperpolarizability of 

water, 153,154^,155 
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Optical properties—Continued 
density-functional theory—Continued 

static properties—Continued 
mean polarizability, 153-155,156/ 
polarizability anisotropy, 

153-155,156/ 
sensitivity to geometry and choice of 

functional, 157 
organic molecules, higher excited 

configuration effect, 116-129 
Organic crystals, macroscopic 

second-order susceptibility, 9-10 
Organic molecules, multiphoton resonant 

N L O processes, 225-235 
Organic molecules and macromolecules 

having extended n configuration 
electronic states, 117 
large N L O responses, 116 
properties, 116-117 

Orr -Ward theory, description, 7 
Oscillator strengths, calculation from 

density-functional theory, 159 

P 

Pariser-Parr-Pople model 
conjugated hydrocarbons, 190/191 
description, 213 
N L O properties of conjugated polymers, 

192-194 
parameter adjustment, 117 

Periodic polymers, quasi one dimensional, 
See Quasi-one-dimensional periodic 
polymers 

Perturbation theory 
calculation 

electron correlations, 118-119 
vibrational hyperpolarizabilities, 69,71 

linear and N L O property calculation, 
168-169 

molecular hyperpolarizabilities, 26-31 
Perturbed energy, definition, 104-105 
Perturbed Hamiltonian, definition, 104 
n electron(s), N L O responses of 

conjugated polymers, 189-207 
n electron charge effect, role in N L O 

property relationship, 14-15 

K electron conjugation length, role in 
N L O properties, 13 

Pockels effect, See Electrooptic effect 
Polarizabilities 

frans-butadiene, 84-91,97,98/ 
polyenes, frequency dependent, See 

Frequency-dependent polarizabilities 
and second hyperpolarizabilities of 
polyenes 

quasi-one-dimensional periodic 
polymers, 181-183 

water, 84,92-94,98-100/ 
Polarizability anisotropy, calculation from 

density-functional theory, 153-155,156/ 
Polarization, definition, 102 
Polyacetylene, interchain interactions, 

72-76 
Polyene(s), frequency-dependent 

polarizabilities and second 
hyperpolarizabilities, 133-143 

Polyene chains, third-order nonlinear 
electric susceptibility theoretical 
studies, 106-107,108f 

Polymer(s) 
conjugated, See Conjugated polymers 
quasi-one-dimensional periodic, See 

Quasi-one-dimensional periodic 
polymers 

Polymer repeat unit geometry effect, role 
in N L O property relationship, 16-17 

Properties, optical, See Optical properties 

Q 

Quantum cell models for delocalized 
electrons, nonlinear properties of 
conjugated polymers, 189-207 

Quantum chemistry, molecular 
hyperpolarizabilities, 23-54 

Quantum chemistry applications to 
materials science, requirements, 145-146 

Quantum mechanical theory of N L O 
phenomena 

development, 4-5 
first-principles calculation of 

N L O coefficients, 8 
linear polarization, 5 
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Quantum mechanical theory of N L O 
phenomena—Continued 

linear susceptibility tensor, 5 
macroscopic susceptibility tensor, 5-6 
microscopic polarizabilities in 

nonabsorbing medium, 6-7 
microscopic susceptibility tensor, 5-6 
nonlinear polarization, 5 
Orr -Ward theory, 7 
second-order susceptibility tensor, 5 
Sekino-Bartlett theory, 7-8 
third-order susceptibility tensor, 5-6 

Quasi-one-dimensional periodic 
polymers, N L O properties, 174-187 

R 

Random phase approximation, See Time-
dependent Hartree-Fock theory 

Resolvent operator, definition, 30-31 
Rumer spin pairing method, spin 

symmetry adaptation, 119,121-122 
Rustagi-Ducuing equation 

bond alternation effect on third-order 
N L O susceptibility of conjugated 
systems, 15-16 

n electron chain length dependence of 
microscopic polarizability, 15 

Second harmonic generation, 2 
Second hyperpolarizabilities 

frans-butadiene, 84-91,97,98/ 
definition, 30 
polyenes, frequency dependent, See 

Frequency-dependent polarizabilities 
and second hyperpolarizabilities of 
polyenes 

water, 84,92-94,98-100/ 
Second-order material structure-NLO 

property relationship 
bond charge and parameter models, 9 
chemical bond formation effect, 13-14 
conjugated organic molecules, 10-11 
doubly substituted benzene molecule, 11 
intermolecular interaction, 13-14 

Second-order material structure-NLO 
property relationship—Continued 

intramolecular charge-transfer, 11-13 
organic crystals, 9-10 
K electron conjugation length, 13 

Second-order susceptibility tensor 
definition, 5 
measure of N L O response of medium, 6 

Sekino-Bartlett theory 
applications, 8 
description, 7 

Self-consistent field calculations, linear 
and N L O properties, 169-170 

Semiempirical methods, calculation 
of molecular hyperpolarizabilities, 
36-38 

Semiempirical quantum cell models of 
third-order N L O response of 
conjugated polymers 

cancellation of nonsize extensive terms, 
214-216 

ground-state correlations, 222 
Huckel model 

advantages and limitations, 219 
energy levels of polyacetylene-like 

polymer, 216-217 
migration and scattering contribution 

to hyperpolarizability, 218-219 
parameters contributing to 

hyperpolarizability, 217-218 
models consisting of Hamiltonian and 

solution method, 213-214 
quantum cells Hamiltonians, 212-213 
single and double configuration 

interaction model, 220-221 
single and double equation-of-motion 

model, scattering basis set, 221 
singles configuration interaction 

model, 219-220 
solid-state effects, 222-223 

Sil ica glass, N L O effects, 17-18 
Single and double configuration 

interaction model, description, 220-221 
Single and double equation-of-motion 

model, 221 
Singles configuration interaction model, 

description, 219-220 
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Solid-state effects, serniempirical quantum 
cell models of third-order N L O response 
of conjugated polymers, 222-223 

Spin symmetry adaptation, Rumer spin 
pairing method, 119,121-122 

State truncation, role in sum-over-state 
representation of nonlinear response 
properties in time-dependent Hartree-
Fock theory, 79-100 

Static hyperpolarizability 
electron correlation effect, 62-65,67 
evaluation, 32-34 
quasi-one-dimensional periodic 

polymers, 174-187 
Static properties 

density-functional theory 
dipole moment, 153 
mean first hyperpolarizability of water, 

153,154f,155 
mean polarizability, 153-155,156/ 
polarizability anisotropy, 153-155,156/ 
sensitivity to geometry and choice 

of functional, 157 
methodology, 147-149 

Structure, relationship to N L O properties, 
9-14 

Su-Schreiffer-Heeger model, description, 
212-213 

Sum-over-states method 
higher excited configuration effect on 

linear and N L O properties of organic 
molecules, 122-123 

multiphoton resonant N L O processes in 
organic molecules, 234-235 

Sum-over-states representation of 
nonlinear response properties in time-
dependent Hartree-Fock theory 

advantages, 79 
amplitude vector determination, 81-83 
calculation procedure, 83 
disadvantage of few-states models, 100 
polarizabilities and first and second 

hyperpolarizabilities of water, 
84,92-94,98-100/ 

polarizabilities and second hyperpolariz
abilities of frans-butadiene, 
84-91,97-98/ 

Sum-over-states representation of 
nonlinear response properties in time-
dependent Hartree-Fock theory— 
Continued 

theory, 80-83 
third harmonic generation for fraws-

butadiene for full space and 
truncated space calculations, 
8 4 , 9 5 - 9 6 U 0 0 

2,2,6,6-Tetracyanonaphmc)quinodimethane, 
third-order nonlinear electric 
susceptibility calculation, 112 

7,7,8,8-Tetracyanoquinodimethane, 
third-order nonlinear electric 
susceptibility calculation, 112 

Theoretical modeling of N L O materials 
applications of N L O processes, 8-9 
second-order materials, 9-14 
third-order materials, 14-17 

Theoretical studies, third-order nonlinear 
electric susceptibilities, 102-113 

Theory and modeling, role in 
development, 18 

Thiophene, third-order nonlinear electric 
susceptibility, 113 

Third harmonic generation, 
frans-butadiene, 84,95-96r ,100 

Third-order material(s), N L O phenomena, 2 
Third-order material structure-NLO 

property relationship 
anharmonic oscillator model, 16 
bond alteration effect, 15-16 
interchain mechanism, 16 
organic compounds, 14 
7C-electron charge effect, 14-15 
polymer repeat unit geometry effect, 

16-17 
Third-order nonlinear electric 

susceptibility theoretical studies 
benzene, 108-112 
general theory 

numerical approaches, 105-106 
perturbation expressions, 104-105 
theoretical approaches, 105 
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Third-order nonlinear electric 
susceptibility theoretical studies— 
Continued 

mono- and disubstituted benzenes, 112 
/7-nitroaniline, 112 
nitrogen-containing aromatics, 112 
polyene chains, 106-107,108* 
reasons for study, 113 
thiophene and derivatives, 113 

Third-order N L O response of conjugated 
polymers, semiempirical quantum 
cell models, 211-223 

Third-order susceptibility tensor 
definition, 5 
measure of N L O response of medium, 6 

Time-dependent coupled perturbed 
Hartree-Fock method 

frequency-dependent nonlinear 
coefficient determination, 235 

multiphoton absorption coefficient 
determination, 235 

Time-dependent Hartree-Fock theory 
application to linear and N L O property 

calculation, 165 
basis sets, 35 
calculation 

correlated frequency-dependent 
polarizabilities, 1-3 

molecular hyperpolarizabilities, 
45-49,52 

combination with density-functional 
theory, 165-172 

correlated frequency-dependent 
polarizabilities, 51-53 

frequency dependence, 66/,67-69,70f 

Time-dependent Hartree-Fock theory— 
Continued 

sum-over-state representation of 
nonlinear response properties, 79-100 

Time-dependent local density 
approximation, dynamic property 
calculation, 150-151 

Transient absorption, multiphoton 
resonant N L O processes in organic 
molecules, 228 

Two-photon pumped lasing, multiphoton 
resonant N L O processes in organic 
molecules, 233-234 

U 

Up-converted emission, multiphoton 
resonant N L O processes in organic 
molecules, 228 

V 

Vibrational hyperpolarizabilities 
calculation using perturbation method, 

69,71 
examples, 71-72 

Vibronic contribution, model 
Hamiltonians for N L O properties 
of conjugated polymers, 204/,205-206 

Z 

Z I N D O , See Intermediate neglect of 
differential overlap 
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